S912XEP100J5MAG Freescale Semiconductor, S912XEP100J5MAG Datasheet - Page 352

no-image

S912XEP100J5MAG

Manufacturer Part Number
S912XEP100J5MAG
Description
MCU 64K FLASH 144-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of S912XEP100J5MAG

Core Processor
HCS12X
Core Size
16-Bit
Speed
50MHz
Connectivity
CAN, EBI/EMI, I²C, IrDA, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
119
Program Memory Size
1MB (1M x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 125°C
Package / Case
144-LQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S912XEP100J5MAG
Manufacturer:
FREESCALE
Quantity:
962
Part Number:
S912XEP100J5MAG
Manufacturer:
FREESCALE
Quantity:
2 400
Part Number:
S912XEP100J5MAG
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S912XEP100J5MAG
Manufacturer:
FREESCALE
Quantity:
2 400
Part Number:
S912XEP100J5MAG
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
S912XEP100J5MAGR
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Chapter 9 Security (S12XE9SECV2)
9.1.4.2
Special single chip mode means BDM is active after reset. The availability of BDM firmware commands
depends on the security state of the device. The BDM secure firmware first performs a blank check of both
the Flash memory and the EEPROM. If the blank check succeeds, security will be temporarily turned off
and the state of the security bits in the appropriate Flash memory location can be changed If the blank
check fails, security will remain active, only the BDM hardware commands will be enabled, and the
accessible memory space is restricted to the peripheral register area. This will allow the BDM to be used
to erase the EEPROM and Flash memory without giving access to their contents. After erasing both Flash
memory and EEPROM, another reset into special single chip mode will cause the blank check to succeed
and the options/security byte can be programmed to “unsecured” state via BDM.
While the BDM is executing the blank check, the BDM interface is completely blocked, which means that
all BDM commands are temporarily blocked.
9.1.4.3
9.1.5
Unsecuring the microcontroller can be done by three different methods:
9.1.5.1
In normal modes (single chip and expanded), security can be temporarily disabled using the backdoor key
access method. This method requires that:
352
Because of an order from the United States International Trade Commission, BGA-packaged product lines and partnumbers
indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010
1. Backdoor key access
2. Reprogramming the security bits
3. Complete memory erase (special modes)
BDM firmware commands are disabled.
BDM hardware commands are restricted to the register space.
Execution of Flash and EEPROM commands is restricted. Please refer to the NVM block guide for
details.
Tracing code execution using the DBG module is disabled.
Debugging XGATE code (breakpoints, single-stepping) is disabled.
BDM operation is completely disabled.
Internal Flash memory and EEPROM are disabled.
Execution of Flash and EEPROM commands is restricted. Please refer to the FTM block guide for
details.
Tracing code execution using the DBG module is disabled.
Debugging XGATE code (breakpoints, single-stepping) is disabled
The backdoor key at 0xFF00–0xFF07 (= global addresses 0x7F_FF00–0x7F_FF07) has been
programmed to a valid value.
Unsecuring the Microcontroller
Special Single Chip Mode (SS)
Expanded Modes (NX, ES, EX, and ST)
Unsecuring the MCU Using the Backdoor Key Access
MC9S12XE-Family Reference Manual , Rev. 1.23
Freescale Semiconductor

Related parts for S912XEP100J5MAG