DSPIC33FJ16GS502-I/SO Microchip Technology, DSPIC33FJ16GS502-I/SO Datasheet - Page 40

IC DSPIC MCU/DSP 16K 28-SOIC

DSPIC33FJ16GS502-I/SO

Manufacturer Part Number
DSPIC33FJ16GS502-I/SO
Description
IC DSPIC MCU/DSP 16K 28-SOIC
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ16GS502-I/SO

Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x10b; D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (7.5mm Width)
Core Frequency
40MHz
Core Supply Voltage
3.3V
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
21
Flash Memory Size
16KB
Supply Voltage Range
3V To 3.6V
Package
28SOIC W
Device Core
dsPIC
Family Name
dsPIC33
Maximum Speed
40 MHz
Operating Supply Voltage
3.3 V
Data Bus Width
16 Bit
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33FJ16GS502-I/SO
Manufacturer:
MICROCHIP
Quantity:
11 200
Part Number:
DSPIC33FJ16GS502-I/SO
Manufacturer:
TAIYO YUDEN
0
Part Number:
DSPIC33FJ16GS502-I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04
The SA and SB bits are modified each time data
passes through the adder/subtracter, but can only be
cleared by the user application. When set, they indicate
that the accumulator has overflowed its maximum
range (bit 31 for 32-bit saturation or bit 39 for 40-bit
saturation) and will be saturated (if saturation is
enabled). When saturation is not enabled, SA and SB
default to bit 39 overflow and thus, indicate that a cata-
strophic overflow has occurred. If the COVTE bit in the
INTCON1 register is set, SA and SB bits will generate
an arithmetic warning trap when saturation is disabled.
The Overflow and Saturation Status bits can optionally
be viewed in the STATUS Register (SR) as the logical
OR of OA and OB (in bit OAB) and the logical OR of SA
and SB (in bit SAB). Programmers can check one bit in
the STATUS register to determine if either accumulator
has overflowed, or one bit to determine if either
accumulator has saturated. This is useful for complex
number
accumulators.
The device supports three Saturation and Overflow
modes:
• Bit 39 Overflow and Saturation:
• Bit 31 Overflow and Saturation:
• Bit 39 Catastrophic Overflow:
3.6.3
The MAC class of instructions (with the exception of
MPY, MPY.N, ED and EDAC) can optionally write a
rounded version of the high word (bits 31 through 16)
of the accumulator that is not targeted by the instruction
into data space memory. The write is performed across
the X bus into combined X and Y address space. The
following addressing modes are supported:
DS70318D-page 38
When bit 39 overflow and saturation occurs, the
saturation logic loads the maximally positive
9.31 (0x7FFFFFFFFF) or maximally negative
9.31 value (0x8000000000) into the target accumu-
lator. The SA or SB bit is set and remains set until
cleared by the user application. This condition is
referred to as ‘super saturation’ and provides
protection against erroneous data or unexpected
algorithm problems (such as gain calculations).
When bit 31 overflow and saturation occurs, the
saturation logic then loads the maximally positive
1.31 value (0x007FFFFFFF) or maximally nega-
tive 1.31 value (0x0080000000) into the target
accumulator. The SA or SB bit is set and remains
set until cleared by the user application. When
this Saturation mode is in effect, the guard bits are
not used, so the OA, OB or OAB bits are never
set.
The bit 39 Overflow Status bit from the adder is
used to set the SA or SB bit, which remains set
until cleared by the user application. No saturation
operation is performed, and the accumulator is
allowed to overflow, destroying its sign. If the
COVTE bit in the INTCON1 register is set, a
catastrophic overflow can initiate a trap exception.
arithmetic,
ACCUMULATOR ‘WRITE BACK’
which
typically
uses
both
Preliminary
• W13, Register Direct:
• [W13] + = 2, Register Indirect with Post-Increment:
3.6.3.1
The round logic is a combinational block that performs
a conventional (biased) or convergent (unbiased)
round function during an accumulator write (store). The
Round mode is determined by the state of the RND bit
in the CORCON register. It generates a 16-bit,
1.15 data value that is passed to the data space write
saturation logic. If rounding is not indicated by the
instruction, a truncated 1.15 data value is stored and
the least significant word is simply discarded.
Conventional rounding zero-extends bit 15 of the accu-
mulator and adds it to the ACCxH word (bits 16 through
31 of the accumulator).
• If the ACCxL word (bits 0 through 15 of the
• If ACCxL is between 0x0000 and 0x7FFF, ACCxH
A consequence of this algorithm is that over a
succession of random rounding operations, the value
tends to be biased slightly positive.
Convergent (or unbiased) rounding operates in the
same manner as conventional rounding, except when
ACCxL equals 0x8000. In this case, the Least
Significant bit (bit 16 of the accumulator) of ACCxH is
examined:
• If it is ‘1’, ACCxH is incremented.
• If it is ‘0’, ACCxH is not modified.
Assuming that bit 16 is effectively random in nature,
this scheme removes any rounding bias that may
accumulate.
The SAC and SAC.R instructions store either a
truncated (SAC), or rounded (SAC.R) version of the
contents of the target accumulator to data memory via
the
Section 3.6.3.2 “Data Space Write Saturation”). For
the MAC class of instructions, the accumulator write-
back operation functions in the same manner,
addressing combined MCU (X and Y) data space
though the X bus. For this class of instructions, the data
is always subject to rounding.
The rounded contents of the non-target
accumulator are written into W13 as a
1.15 fraction.
The rounded contents of the non-target
accumulator are written into the address pointed
to by W13 as a 1.15 fraction. W13 is then
incremented by 2 (for a word write).
accumulator) is between 0x8000 and 0xFFFF
(0x8000 included), ACCxH is incremented.
is left unchanged.
X
bus,
Round Logic
subject
© 2009 Microchip Technology Inc.
to
data
saturation
(see

Related parts for DSPIC33FJ16GS502-I/SO