AT90PWM1-16SU Atmel, AT90PWM1-16SU Datasheet - Page 19

MCU AVR 8K FLASH 16MHZ 24-SOIC

AT90PWM1-16SU

Manufacturer Part Number
AT90PWM1-16SU
Description
MCU AVR 8K FLASH 16MHZ 24-SOIC
Manufacturer
Atmel
Series
AVR® 90PWM Lightingr
Datasheet

Specifications of AT90PWM1-16SU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
19
Program Memory Size
8KB (8K x 8)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 105°C
Package / Case
24-SOIC (7.5mm Width)
Processor Series
AT90PWMx
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SPI
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
19
Number Of Timers
2
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATAVRFBKIT, ATAVRISP2
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 11 Channel
For Use With
ATSTK600-SOIC - STK600 SOCKET/ADAPTER FOR SOIC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90PWM1-16SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
6.3
6.3.1
6.3.2
4378C–AVR–09/08
EEPROM Data Memory
EEPROM Read/Write Access
The EEPROM Address Registers – EEARH and EEARL
Figure 3. On-chip Data SRAM Access Cycles
The AT90PWM1 contains 512 bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.
For a detailed description of SPI and Parallel data downloading to the EEPROM, see
Downloading” on page
mands” on page 223
The EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in
the user software detect when the next byte can be written. If the user code contains instructions
that write the EEPROM, some precautions must be taken. In heavily filtered power supplies, V
is likely to rise or fall slowly on power-up/down. This causes the device for some period of time to
run at a voltage lower than specified as minimum for the clock frequency used. For details on
how to avoid problems in these situations
24.
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.
Bit
15
Address
clk
Data
Data
WR
CPU
RD
respectively.
14
234, and
Compute Address
13
“Parallel Programming Parameters, Pin Mapping, and Com-
T1
Memory Access Instruction
12
seeSee “Preventing EEPROM Corruption” on page
11
Table
Address valid
T2
10
2. A self-timing function, however, lets
9
Next Instruction
EEAR8
AT90PWM1
8
T3
EEARH
“Serial
19
CC

Related parts for AT90PWM1-16SU