PIC16LF1828-E/ML Microchip Technology, PIC16LF1828-E/ML Datasheet - Page 89

no-image

PIC16LF1828-E/ML

Manufacturer Part Number
PIC16LF1828-E/ML
Description
7 KB Flash, 256 Bytes RAM, 32 MHz Int. Osc, 18 I/0, Enhanced Mid Range Core, Nan
Manufacturer
Microchip Technology
Series
PIC® XLP™ 16Fr
Datasheet

Specifications of PIC16LF1828-E/ML

Core Processor
PIC
Core Size
8-Bit
Speed
32MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
17
Program Memory Size
7KB (4K x 14)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 12x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
20-VFQFN Exposed Pad
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
8.1
Interrupts are disabled upon any device Reset. They
are enabled by setting the following bits:
• GIE bit of the INTCON register
• Interrupt Enable bit(s) for the specific interrupt
• PEIE bit of the INTCON register (if the Interrupt
The INTCON, PIR1, PIR2 and PIR3 registers record
individual interrupts via interrupt flag bits. Interrupt flag
bits will be set, regardless of the status of the GIE, PEIE
and individual interrupt enable bits.
The following events happen when an interrupt event
occurs while the GIE bit is set:
• Current prefetched instruction is flushed
• GIE bit is cleared
• Current Program Counter (PC) is pushed onto the
• Critical registers are automatically saved to the
• PC is loaded with the interrupt vector 0004h
The firmware within the Interrupt Service Routine (ISR)
should determine the source of the interrupt by polling
the interrupt flag bits. The interrupt flag bits must be
cleared before exiting the ISR to avoid repeated
interrupts. Because the GIE bit is cleared, any interrupt
that occurs while executing the ISR will be recorded
through its interrupt flag, but will not cause the
processor to redirect to the interrupt vector.
The RETFIE instruction exits the ISR by popping the
previous address from the stack, restoring the saved
context from the shadow registers and setting the GIE
bit.
For additional information on a specific interrupt’s
operation, refer to its peripheral chapter.
 2010 Microchip Technology Inc.
event(s)
Enable bit of the interrupt event is contained in the
PIEx register)
stack
shadow registers (See
Context
Note 1: Individual interrupt flag bits are set,
2: All interrupts will be ignored while the GIE
Operation
Saving”)
regardless of the state of any other
enable bits.
bit is cleared. Any interrupt occurring
while the GIE bit is clear will be serviced
when the GIE bit is set again.
Section 8.5 “Automatic
Preliminary
8.2
Interrupt latency is defined as the time from when the
interrupt event occurs to the time code execution at the
interrupt vector begins. The latency for synchronous
interrupts is 3 or 4 instruction cycles. For asynchronous
interrupts, the latency is 3 to 5 instruction cycles,
depending on when the interrupt occurs. See
and
PIC16(L)F1824/1828
Figure 8-4
Interrupt Latency
for more details.
DS41419B-page 89
Figure 8-3

Related parts for PIC16LF1828-E/ML