AT45DB321D-TU Atmel, AT45DB321D-TU Datasheet - Page 11

IC FLASH 32MBIT 66MHZ 28TSOP

AT45DB321D-TU

Manufacturer Part Number
AT45DB321D-TU
Description
IC FLASH 32MBIT 66MHZ 28TSOP
Manufacturer
Atmel
Datasheets

Specifications of AT45DB321D-TU

Format - Memory
FLASH
Memory Type
DataFLASH
Memory Size
32M (8192 pages x 528 bytes)
Speed
66MHz
Interface
SPI, RapidS
Voltage - Supply
2.7 V ~ 3.6 V
Operating Temperature
-40°C ~ 85°C
Package / Case
28-TSOP
Architecture
Sectored
Interface Type
SPI
Supply Voltage (max)
3.6 V
Supply Voltage (min)
2.7 V
Maximum Operating Current
15 mA
Mounting Style
SMD/SMT
Organization
528 B x 8192
Memory Configuration
8192 Pages X 528 Bytes
Clock Frequency
20MHz
Supply Voltage Range
2.7V To 3.6V
Memory Case Style
TSOP
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT45DB321D-TU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
7.8
8. Sector Protection
3597O–DFLASH–10/09
Main Memory Page Program Through Buffer
The WP pin can be asserted while the device is erasing, but protection will not be activated until
the internal erase cycle completes.
Figure 7-1.
Note:
This operation is a combination of the Buffer Write and Buffer to Main Memory Page Program
with Built-in Erase operations. Data is first clocked into buffer 1 or buffer 2 from the input pin (SI)
and then programmed into a specified page in the main memory. To perform a main memory
page program through buffer for the DataFlash standard page size (528 bytes), a 1-byte opcode,
82H for buffer 1 or 85H for buffer 2, must first be clocked into the device, followed by three
address bytes. The address bytes are comprised of 1 don’t care bit, 13 page address bits,
(PA12 - PA0) that select the page in the main memory where data is to be written, and 10 buffer
address bits (BFA9 - BFA0) that select the first byte in the buffer to be written. To perform a
main memory page program through buffer for the binary page size (512 bytes), the opcode 82H
for buffer 1 or 85H for buffer 2, must be clocked into the device followed by three address bytes
consisting of 2 don’t care bits, 13 page address bits (A21 - A9) that specify the page in the main
memory to be written, and 9 buffer address bits (BFA8 - BFA0) that selects the first byte in the
buffer to be written. After all address bytes are clocked in, the part will take data from the input
pins and store it in the specified data buffer. If the end of the buffer is reached, the device will
wrap around back to the beginning of the buffer. When there is a low-to-high transition on the CS
pin, the part will first erase the selected page in main memory to all 1s and then program the
data stored in the buffer into that memory page. Both the erase and the programming of the
page are internally self-timed and should take place in a maximum time of t
the status register and the RDY/BUSY pin will indicate that the part is busy.
Two protection methods, hardware and software controlled, are provided for protection against
inadvertent or erroneous program and erase cycles. The software controlled method relies on
the use of software commands to enable and disable sector protection while the hardware con-
trolled method employs the use of the Write Protect (WP) pin. The selection of which sectors
that are to be protected or unprotected against program and erase operations is specified in the
nonvolatile Sector Protection Register. The status of whether or not sector protection has been
enabled or disabled by either the software or the hardware controlled methods can be deter-
mined by checking the Status Register.
Command
Chip Erase
1. Refer to the errata regarding Chip Erase on
Chip Erase
CS
SI
Each transition
represents 8 bits
Opcode
Byte 1
Byte 1
Opcode
C7H
Byte 2
page
Opcode
Byte 3
56.
Byte 2
94H
Opcode
Byte 4
AT45DB321D
Byte 3
80H
EP
. During this time,
Byte 4
9AH
11

Related parts for AT45DB321D-TU