FAN4800IN Fairchild Semiconductor, FAN4800IN Datasheet - Page 9

IC PFC CONTROLLER CCM/DCM 16DIP

FAN4800IN

Manufacturer Part Number
FAN4800IN
Description
IC PFC CONTROLLER CCM/DCM 16DIP
Manufacturer
Fairchild Semiconductor
Datasheets

Specifications of FAN4800IN

Mode
Continuous Conduction (CCM), Discontinuous Conduction (DCM)
Frequency - Switching
66kHz ~ 84kHz
Current - Startup
100µA
Voltage - Supply
11 V ~ 16.5 V
Operating Temperature
-40°C ~ 125°C
Mounting Type
Through Hole
Package / Case
16-DIP (0.300", 7.62mm)
Mounting Style
Through Hole
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
FAN4800IN
Manufacturer:
FSC
Quantity:
20 000
FAN4800 Rev. 1.0.5
© 2005 Fairchild Semiconductor Corporation
Functional Description
The FAN4800 consists of an average current controlled,
continuous boost Power Factor Correction (PFC) front
end and a synchronized Pulse Width Modulator (PWM)
back end. The PWM can be used in either current or
voltage mode. In voltage mode, feed forward from the
PFC output bus can be used to improve the PWM’s line
regulation. In either mode, the PWM stage uses conven-
tional trailing-edge, duty-cycle modulation. This patented
leading/trailing edge modulation results in a higher
usable PFC error amplifier bandwidth and can signifi-
cantly reduce the size of the PFC DC bus capacitor.
The synchronization of the PWM with the PFC simplifies
the PWM compensation due to the controlled ripple on
the PFC output capacitor (the PWM input capacitor). The
PWM section of the FAN4800 runs at the same fre-
quency as the PFC.
In addition to power factor correction, a number of pro-
tection features are built into the FAN4800. These
include soft-start, PFC over-voltage protection, peak cur-
rent limiting, brownout protection, duty cycle limiting, and
under-voltage lockout (UVLO).
Power Factor Correction
Power Factor Correction treats a nonlinear load like a
resistive load to the AC line. For a resistor, the current
drawn from the line is in phase with and proportional to
the line voltage, so the power factor is unity (one). A
common class of nonlinear load is the input of most
power supplies, which use a bridge rectifier and capaci-
tive input filter fed from the line.
The peak charging effect, which occurs on the input filter
capacitor in these supplies, causes brief, high-amplitude
pulses of current to flow from the power line, rather than
a sinusoidal current in phase with the line voltage. Such
supplies present a power factor to the line of less than
one (i.e., they cause significant current harmonics of the
power line frequency to appear at the input). If the input
current drawn by such a supply (or any nonlinear load)
can be made to follow the input voltage in instantaneous
amplitude, it appears resistive to the supply.
To hold the input current draw of a device drawing power
from the AC line in phase with and proportional to the
input voltage, that device must be prevented from load-
ing the line except in proportion to the instantaneous line
voltage. To accomplish this, the PFC section of the
FAN4800 uses a boost mode DC-DC converter. The
input to the converter is the full-wave, rectified, AC line
voltage. No bulk filtering is applied following the bridge
rectifier, so the input voltage to the boost converter
ranges (at twice line the frequency) from zero volts to a
peak value of the AC input and back to zero. By forcing
the boost converter to meet two simultaneous conditions,
it is possible to ensure that the current drawn from the
power line is proportional to the input line voltage.
9
One of these conditions is that the output voltage of the
boost converter must be set higher than the peak value
of the line voltage. A commonly used value is 385V
allow for a high line of 270V
is that the current drawn from the line at any given
instant must be proportional to the line voltage. Estab-
lishing a suitable voltage control loop for the converter,
which in turn drives a current error amplifier and switch-
ing output driver, satisfies the first of these requirements.
The second requirement is met by using the rectified AC
line voltage to modulate the output of the voltage control
loop. Such modulation causes the current error amplifier
to command a power stage current that varies directly
with the input voltage. To prevent ripple, which necessar-
ily appears at the output of boost circuit (typically about
10V
back through the voltage error amplifier, the bandwidth of
the voltage loop is deliberately kept low. A final refine-
ment is to adjust the overall gain of the PFC section to be
proportional to 1/V
tion of the system as the AC input voltage.
Since the boost converter in the FAN4800 PFC is current
averaging, no slope compensation is required.
1. PFC Section
1.1 Gain Modulator
Figure 1 shows a block diagram of the PFC section of
the FAN4800. The gain modulator is the heart of the
PFC, as the circuit block controls the response of the
current loop to line voltage waveform and frequency,
RMS line voltage, and PFC output voltages. There are
three inputs to the gain modulator:
1. A current representing the instantaneous input voltage
2. A voltage proportional to the long-term RMS AC line
(amplitude and wave shape) to the PFC. The rectified
AC input sine wave is converted to a proportional cur-
rent via a resistor and is then fed into the gain modula-
tor at I
ground noise, required in high-power, switching-power
conversion
responds linearly to this current.
voltage, derived from the rectified line voltage after
scaling and filtering. This signal is presented to the
gain modulator at V
lator is inversely proportional to V
unusually low values of V
touring takes over to limit power dissipation of the cir-
cuit components under heavy brownout conditions).
The relationship between V
and is illustrated in Figure 5.
AC
on a 385V
AC
. Sampling current in this way minimizes
environments.
IN
DC
2
, which linearizes the transfer func-
RMS
level), from introducing distortion
. The output of the gain modu-
AC
RMS
rms. The second condition
RMS
, where special gain con-
The
and gain is called K
gain
RMS
www.fairchildsemi.com
2
(except at
modulator
DC
, to

Related parts for FAN4800IN