PIC18F2221-I/SS Microchip Technology, PIC18F2221-I/SS Datasheet - Page 135

IC PIC MCU FLASH 2KX16 28SSOP

PIC18F2221-I/SS

Manufacturer Part Number
PIC18F2221-I/SS
Description
IC PIC MCU FLASH 2KX16 28SSOP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2221-I/SS

Core Size
8-Bit
Program Memory Size
4KB (2K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
25
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SSOP
Controller Family/series
PIC18
No. Of I/o's
25
Eeprom Memory Size
256Byte
Ram Memory Size
512Byte
Cpu Speed
40MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
EUSART, I2C, MSSP, SPI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
25
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, ICE2000, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 10 Channel
Package
28SSOP
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Operating Supply Voltage
5 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164307 - MODULE SKT FOR PM3 28SSOP
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2221-I/SS
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
13.2
Timer1 can be configured for 16-bit reads and writes
(see Figure 13-2). When the RD16 control bit
(T1CON<7>) is set, the address for TMR1H is mapped
to a buffer register for the high byte of Timer1. A read
from TMR1L will load the contents of the high byte of
Timer1 into the Timer1 high byte buffer. This provides
the user with the ability to accurately read all 16 bits of
Timer1 without having to determine whether a read of
the high byte, followed by a read of the low byte, has
become invalid due to a rollover between reads.
A write to the high byte of Timer1 must also take place
through the TMR1H Buffer register. The Timer1 high
byte is updated with the contents of TMR1H when a
write occurs to TMR1L. This allows a user to write all
16 bits to both the high and low bytes of Timer1 at once.
The high byte of Timer1 is not directly readable or
writable in this mode. All reads and writes must take
place through the Timer1 High Byte Buffer register.
Writes to TMR1H do not clear the Timer1 prescaler.
The prescaler is only cleared on writes to TMR1L.
13.3
An on-chip crystal oscillator circuit is incorporated
between pins T1OSI (input) and T1OSO (amplifier
output). It is enabled by setting the Timer1 Oscillator
Enable bit, T1OSCEN (T1CON<3>). The oscillator is a
low-power circuit rated for 32 kHz crystals. It will
continue to run during all power-managed modes. The
circuit for a typical LP oscillator is shown in Figure 13-3.
Table 13-1 shows the capacitor selection for the Timer1
oscillator.
The user must provide a software time delay to ensure
proper start-up of the Timer1 oscillator.
FIGURE 13-3:
© 2009 Microchip Technology Inc.
Note:
Timer1 16-Bit Read/Write Mode
Timer1 Oscillator
27 pF
27 pF
C1
C2
See the Notes with Table 13-1 for additional
information about capacitor selection.
32.768 kHz
XTAL
EXTERNAL COMPONENTS
FOR THE TIMER1
LP OSCILLATOR
PIC18F2221/2321/4221/4321 FAMILY
T1OSI
T1OSO
PIC18FXXXX
TABLE 13-1:
13.3.1
The Timer1 oscillator is also available as a clock source
in power-managed modes. By setting the clock select
bits, SCS<1:0> (OSCCON<1:0>), to ‘01’, the device
switches to SEC_RUN mode; both the CPU and
peripherals are clocked from the Timer1 oscillator. If the
IDLEN bit (OSCCON<7>) is cleared and a SLEEP
instruction is executed, the device enters SEC_IDLE
mode. Additional details are available in Section 4.0
“Power-Managed Modes”.
Whenever the Timer1 oscillator is providing the clock
source, the Timer1 system clock status flag, T1RUN
(T1CON<6>), is set. This can be used to determine the
controller’s current clocking mode. It can also indicate
the clock source being currently used by the Fail-Safe
Clock Monitor. If the Clock Monitor is enabled and the
Timer1 oscillator fails while providing the clock, polling
the T1RUN bit will indicate whether the clock is being
provided by the Timer1 oscillator or another source.
13.3.2
The Timer1 oscillator can operate at two distinct levels
of power consumption based on device configuration.
When the LPT1OSC Configuration bit is set, the Timer1
oscillator operates in a low-power mode. When
LPT1OSC is not set, Timer1 operates at a higher power
level. Power consumption for a particular mode is
relatively constant, regardless of the device’s operating
mode. The default Timer1 configuration is the higher
power mode.
As the low-power Timer1 mode tends to be more
sensitive to interference, high noise environments may
cause some oscillator instability. The low-power option is,
therefore, best suited for low noise applications where
power conservation is an important design consideration.
Osc Type
Note 1: Microchip suggests these values as a
LP
2: Higher capacitance increases the stability
3: Since each resonator/crystal has its own
4: Capacitor values are for design guidance
USING TIMER1 AS A
CLOCK SOURCE
LOW-POWER TIMER1 OPTION
starting point in validating the oscillator
circuit.
of the oscillator but also increases the
start-up time.
characteristics, the user should consult
the resonator/crystal manufacturer for
appropriate
components.
only.
32 kHz
Freq
CAPACITOR SELECTION FOR
THE TIMER OSCILLATOR
values
27 pF
C1
DS39689F-page 135
(1)
of
27 pF
external
C2
(1)

Related parts for PIC18F2221-I/SS