PIC18F2221-I/SS Microchip Technology, PIC18F2221-I/SS Datasheet - Page 27

IC PIC MCU FLASH 2KX16 28SSOP

PIC18F2221-I/SS

Manufacturer Part Number
PIC18F2221-I/SS
Description
IC PIC MCU FLASH 2KX16 28SSOP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2221-I/SS

Core Size
8-Bit
Program Memory Size
4KB (2K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
25
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SSOP
Controller Family/series
PIC18
No. Of I/o's
25
Eeprom Memory Size
256Byte
Ram Memory Size
512Byte
Cpu Speed
40MHz
No. Of Timers
4
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
EUSART, I2C, MSSP, SPI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
25
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, ICE2000, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 10 Channel
Package
28SSOP
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Operating Supply Voltage
5 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164307 - MODULE SKT FOR PM3 28SSOP
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2221-I/SS
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
2.4
The PGC and PGD pins are used for In-Circuit Serial
Programming (ICSP) and debugging purposes. It is
recommended to keep the trace length between the
ICSP connector and the ICSP pins on the device as
short as possible. If the ICSP connector is expected to
experience an ESD event, a series resistor is recom-
mended, with the value in the range of a few tens of
ohms, not to exceed 100Ω.
Pull-up resistors, series diodes and capacitors on the
PGC and PGD pins are not recommended as they will
interfere
munications to the device. If such discrete components
are an application requirement, they should be removed
from the circuit during programming and debugging.
Alternatively, refer to the AC/DC characteristics and
timing requirements information in the respective device
Flash programming specification for information on
capacitive loading limits and pin input voltage high (V
and input low (V
For device emulation, ensure that the “Communication
Channel Select” (i.e., PGC/PGD pins) programmed
into the device matches the physical connections for
the ICSP to the MPLAB
ICE™ emulator.
For more information on the ICD 2, ICD 3 and REAL
ICE emulator connection requirements, refer to the
following documents that are available on the
Microchip web site.
• “MPLAB
• “Using MPLAB
• “MPLAB
• “Using MPLAB
• “MPLAB
• “MPLAB
• “Using MPLAB
2.5
Many microcontrollers have options for at least two
oscillators: a high-frequency primary oscillator and a
low-frequency
Section 3.0 “Oscillator Configurations” for details).
The oscillator circuit should be placed on the same
side of the board as the device. Place the oscillator
circuit close to the respective oscillator pins with no
more than 0.5 inch (12 mm) between the circuit
components and the pins. The load capacitors should
be placed next to the oscillator itself, on the same side
of the board.
© 2009 Microchip Technology Inc.
Guide” (DS51331)
Guide” (DS51616)
(poster) (DS51749)
ICSP Pins
External Oscillator Pins
®
®
®
®
with
ICD 2 In-Circuit Debugger User’s
ICD 2 Design Advisory” (DS51566)
ICD 3 Design Advisory” (DS51764)
REAL ICE™ In-Circuit Emulator User’s
IL
®
®
®
) requirements.
secondary
the
ICD 2” (poster) (DS51265)
ICD 3” (poster) (DS51765)
REAL ICE™ In-Circuit Emulator”
PIC18F2221/2321/4221/4321 FAMILY
®
programmer/debugger
ICD 2, MPLAB ICD 3 or REAL
oscillator
(refer
com-
IH
to
)
Use a grounded copper pour around the oscillator
circuit to isolate it from surrounding circuits. The
grounded copper pour should be routed directly to the
MCU ground. Do not run any signal traces or power
traces inside the ground pour. Also, if using a
two-sided board, avoid any traces on the other side of
the board where the crystal is placed. A suggested
layout is shown in Figure 2-3.
For additional information and design guidance on
oscillator circuits, please refer to these Microchip
Application Notes, available at the corporate web site
(www.microchip.com):
• AN826, “Crystal Oscillator Basics and Crystal
• AN849, “Basic PICmicro
• AN943, “Practical PICmicro
• AN949, “Making Your Oscillator Work”
FIGURE 2-3:
2.6
Unused I/O pins should be configured as outputs and
driven to a logic low state. Alternatively, connect a 1 kΩ
to 10 kΩ resistor to V
output to logic low.
Selection for rfPIC™ and PICmicro
and Design”
Main Oscillator
Guard Ring
Guard Trace
Secondary
Oscillator
Unused I/Os
SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT
SS
on unused pins and drive the
®
Oscillator Design”
®
Oscillator Analysis
DS39689F-page 27
®
Devices”
13
14
15
16
17
18
19
20

Related parts for PIC18F2221-I/SS