DSPIC30F2020-30I/MM Microchip Technology, DSPIC30F2020-30I/MM Datasheet - Page 133

IC DSPIC MCU/DSP 12K 28QFN

DSPIC30F2020-30I/MM

Manufacturer Part Number
DSPIC30F2020-30I/MM
Description
IC DSPIC MCU/DSP 12K 28QFN
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F2020-30I/MM

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
12KB (4K x 24)
Program Memory Type
FLASH
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-QFN
Core Frequency
15MHz
Core Supply Voltage
3.3V
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
21
Flash Memory Size
12KB
Supply Voltage Range
3V To 3.6V
Package
28QFN-S EP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300023 - KIT DEMO DSPICDEM SMPS BUCKAC164322 - MODULE SOCKET MPLAB PM3 28/44QFNDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F2020-30I/MMB32
Manufacturer:
Microchip Technology
Quantity:
135
FIGURE 12-19:
12.19 PWM Interrupts
The PWM module can generate interrupts based on
internal timing or based on external signals via the cur-
rent-limit and Fault inputs. The primary time base mod-
ule can generate an interrupt request when a special
event occurs. Each PWM generator module has its
own interrupt request signal to the interrupt controller.
The interrupt for each PWM generator is an OR of the
trigger event interrupt request, the current-limit input
event or the Fault input event for that module.
There are four interrupt request signals to the interrupt
control plus another interrupt request from the primary
time base on special events.
12.20 PWM Time Base Interrupts
The PWM module can generate interrupts based on
the primary time base and/or the individual time bases
in each PWM generator. The interrupt timing is speci-
fied by the Special Event Comparison Register
(SEVTCMP) for the primary time base, and by the
TRIGx registers for the individual time bases in the
PWM generator modules.
The primary time base special event interrupt is
enabled via the SEIEN bit in the PTCON register. The
individual time base interrupts generated by the trigger
logic in each PWM generator are controlled by the
TRGIEN bit in the PWMCONx registers.
© 2006 Microchip Technology Inc.
PWM TRIGGER BLOCK DIAGRAM
TRIGx Write
Clk
15
15
Compare Logic
TRIGx Register
PTMRx
Preliminary
PDI
PDI
=
12.21 PWM Fault and Current-Limit Pins
The PWM module supports multiple Fault pins for each
PWM generator. These pins are labeled SFLTx
(Shared Fault) or IFLTx (Individual Fault). The Shared
Fault pins can be seen and used by any of the PWM
generators. The Individual Fault pins are usable by
specific PWM generators.
Each PWM generator can have one pin for use as a
cycle-by-cycle current limit, and another pin for use as
either a cycle-by-cycle current limit or a latching current
Fault disable function.
12.22 Leading Edge Blanking
Each PWM generator supports “Leading Edge Blank-
ing” of the current-limit and Fault inputs via the
LEB<9:3> bits and the PHR, PHF, PLR, PLF, FLTLE-
BEN and CLLEBEN bits in the LEBCONx registers.
The purpose of leading edge blanking is to mask the
transients that occur on the application printed circuit
board when the power transistors are turned on and off.
The LEB bits support the blanking (ignoring) of the cur-
rent-limit and Fault inputs for a period of 0 to 1024 nsec
in 8.4 nsec increments following any specified rising or
falling edge of the coarse PWMH and PWML signals.
The coarse PWM signal (signal prior to the PWM fine
tuning) has resolution of 8.4 nsec (at 30 MIPS), which
is the same time resolution as the LEB counters.
The PHR, PHF, PLR and PLF bits select which edge of
the PWMH and PLWL signals will start the blanking
timer. If a new selected edge triggers the LEB timer
while the timer is still active from a previously selected
PWM edge, the timer reinitializes and continues
counting.
3
3
dsPIC30F1010/202X
TRGDIV<2:0>
Divider
Pulse
DS70178C-page 131
PWMx Trigger

Related parts for DSPIC30F2020-30I/MM