DSPIC30F2020-30I/MM Microchip Technology, DSPIC30F2020-30I/MM Datasheet - Page 158

IC DSPIC MCU/DSP 12K 28QFN

DSPIC30F2020-30I/MM

Manufacturer Part Number
DSPIC30F2020-30I/MM
Description
IC DSPIC MCU/DSP 12K 28QFN
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F2020-30I/MM

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
12KB (4K x 24)
Program Memory Type
FLASH
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-QFN
Core Frequency
15MHz
Core Supply Voltage
3.3V
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
21
Flash Memory Size
12KB
Supply Voltage Range
3V To 3.6V
Package
28QFN-S EP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300023 - KIT DEMO DSPICDEM SMPS BUCKAC164322 - MODULE SOCKET MPLAB PM3 28/44QFNDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F2020-30I/MMB32
Manufacturer:
Microchip Technology
Quantity:
135
dsPIC30F1010/202X
14.5
In the Slave modes, the module can synchronize buffer
reads and write to the master device by clock
stretching.
14.5.1
Both 10-bit and 7-bit Transmit modes implement clock
stretching by asserting the SCLREL bit after the falling
edge of the ninth clock if the TBF bit is cleared,
indicating the buffer is empty.
In Slave Transmit modes, clock stretching is always
performed, irrespective of the STREN bit.
Clock synchronization takes place following the ninth
clock of the transmit sequence. If the device samples
an ACK on the falling edge of the ninth clock, and if the
TBF bit is still clear, then the SCLREL bit is automati-
cally cleared. The SCLREL being cleared to ‘0’ will
assert the SCL line low. The user’s ISR must set the
SCLREL bit before transmission is allowed to con-
tinue. By holding the SCL line low, the user has time to
service the ISR and load the contents of the I2CTRN
before the master device can initiate another transmit
sequence.
14.5.2
The STREN bit in the I2CCON register can be used to
enable clock stretching in Slave Receive mode. When
the STREN bit is set, the SCL pin will be held low at
the end of each data receive sequence.
14.5.3
When the STREN bit is set in Slave Receive mode,
the SCL line is held low when the buffer register is full.
The method for stretching the SCL output is the same
for both 7 and 10-bit Addressing modes.
Clock stretching takes place following the ninth clock of
the receive sequence. On the falling edge of the ninth
clock at the end of the ACK sequence, if the RBF bit is
set, the SCLREL bit is automatically cleared, forcing the
SCL output to be held low. The user’s ISR must set the
SCLREL bit before reception is allowed to continue. By
holding the SCL line low, the user has time to service
the ISR and read the contents of the I2CRCV before the
master device can initiate another receive sequence.
This will prevent buffer overruns from occurring.
DS70178C-page 156
Note 1: If the user loads the contents of I2CTRN,
2: The SCLREL bit can be set in software,
Automatic Clock Stretch
TRANSMIT CLOCK STRETCHING
RECEIVE CLOCK STRETCHING
CLOCK STRETCHING DURING
7-BIT ADDRESSING (STREN = 1)
setting the TBF bit before the falling edge
of the ninth clock, the SCLREL bit will not
be cleared and clock stretching will not
occur.
regardless of the state of the TBF bit.
Preliminary
14.5.4
Clock stretching takes place automatically during the
addressing sequence. Because this module has a
register for the entire address, it is not necessary for
the protocol to wait for the address to be updated.
After the address phase is complete, clock stretching
will occur on each data receive or transmit sequence
as was described earlier.
14.6
When the STREN bit is ‘1’, the SCLREL bit may be
cleared by software to allow software to control the
clock stretching. The logic will synchronize writes to
the SCLREL bit with the SCL clock. Clearing the
SCLREL bit will not assert the SCL output until the
module detects a falling edge on the SCL output and
SCL is sampled low. If the SCLREL bit is cleared by
the user while the SCL line has been sampled low, the
SCL output will be asserted (held low). The SCL out-
put will remain low until the SCLREL bit is set, and all
other devices on the I
This ensures that a write to the SCLREL bit will not
violate the minimum high time requirement for SCL.
If the STREN bit is ‘0’, a software write to the SCLREL
bit will be disregarded and have no effect on the
SCLREL bit.
14.7
The I
(I
rupt Flag). The MI2CIF interrupt flag is activated on
completion of a master message event. The SI2CIF
interrupt flag is activated on detection of a message
directed to the slave.
2
C Master Interrupt Flag) and SI2CIF (I
Note 1: If the user reads the contents of the
2
C module generates two interrupt flags, MI2CIF
2: The SCLREL bit can be set in software,
Software Controlled Clock
Stretching (STREN = 1)
Interrupts
CLOCK STRETCHING DURING
10-BIT ADDRESSING (STREN = 1)
I2CRCV, clearing the RBF bit before the
falling edge of the ninth clock, the
SCLREL bit will not be cleared and clock
stretching will not occur.
regardless of the state of the RBF bit. The
user should be careful to clear the RBF bit
in the ISR before the next receive
sequence in order to prevent an Overflow
condition.
2
© 2006 Microchip Technology Inc.
C bus have deasserted SCL.
2
C Slave Inter-

Related parts for DSPIC30F2020-30I/MM