DSPIC30F2020-30I/MM Microchip Technology, DSPIC30F2020-30I/MM Datasheet - Page 47

IC DSPIC MCU/DSP 12K 28QFN

DSPIC30F2020-30I/MM

Manufacturer Part Number
DSPIC30F2020-30I/MM
Description
IC DSPIC MCU/DSP 12K 28QFN
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F2020-30I/MM

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
12KB (4K x 24)
Program Memory Type
FLASH
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-QFN
Core Frequency
15MHz
Core Supply Voltage
3.3V
Embedded Interface Type
I2C, SPI, UART
No. Of I/o's
21
Flash Memory Size
12KB
Supply Voltage Range
3V To 3.6V
Package
28QFN-S EP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300023 - KIT DEMO DSPICDEM SMPS BUCKAC164322 - MODULE SOCKET MPLAB PM3 28/44QFNDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F2020-30I/MMB32
Manufacturer:
Microchip Technology
Quantity:
135
4.2.3
Modulo addressing can be applied to the Effective
Address (EA) calculation associated with any W regis-
ter. It is important to realize that the address bound-
aries check for addresses less than or greater than the
upper (for incrementing buffers) and lower (for decre-
menting buffers) boundary addresses (not just equal
to). Address changes may, therefore, jump beyond
boundaries and still be adjusted correctly.
4.3
Bit-Reversed Addressing is intended to simplify data
re-ordering for radix-2 FFT algorithms. It is supported
by the X AGU for data writes only.
The modifier, which may be a constant value or register
contents, is regarded as having its bit order reversed.
The address source and destination are kept in normal
order. Thus, the only operand requiring reversal is the
modifier.
4.3.1
Bit-Reversed Addressing is enabled when:
1.
2.
3.
FIGURE 4-2:
© 2006 Microchip Technology Inc.
Note:
BWM (W register selection) in the MODCON
register is any value other than 15 (the stack can
not be accessed using Bit-Reversed
Addressing) and
the BREN bit is set in the XBREV register and
the Addressing mode used is Register Indirect
with Pre-Increment or Post-Increment.
b15 b14 b13 b12
b15 b14 b13 b12
Bit-Reversed Addressing
MODULO ADDRESSING
APPLICABILITY
The modulo corrected effective address is
written back to the register only when Pre-
Modify or Post-Modify Addressing mode is
used to compute the Effective Address.
When an address offset (e.g., [W7 + W2])
is used, modulo address correction is per-
formed, but the contents of the register
remains unchanged.
BIT-REVERSED ADDRESSING
IMPLEMENTATION
BIT-REVERSED ADDRESS EXAMPLE
b11 b10 b9 b8
b11 b10 b9 b8
b7 b6 b5 b4
b7 b6 b5 b1
Pivot Point
Preliminary
b3 b2 b1
b2 b3 b4
Sequential Address
Bit-Reversed Address
If the length of a bit-reversed buffer is M = 2
then the last ‘N’ bits of the data buffer start address
must be zeros.
XB<14:0> is the bit-reversed address modifier or ‘pivot
point’ which is typically a constant. In the case of an
FFT computation, its value is equal to half of the FFT
data buffer size.
When enabled, Bit-Reversed Addressing will only be
executed for register indirect with pre-increment or
post-increment addressing and word sized data writes.
It will not function for any other Addressing mode or for
byte sized data, and normal addresses will be gener-
ated instead. When Bit-Reversed Addressing is active,
the W Address Pointer will always be added to the
address modifier (XB) and the offset associated with
the register Indirect Addressing mode will be ignored.
In addition, as word sized data is a requirement, the
LSb of the EA is ignored (and always clear).
If Bit-Reversed Addressing has already been enabled
by setting the BREN (XBREV<15>) bit, then a write to
the XBREV register should not be immediately followed
by an indirect read operation using the W register that
has been designated as the bit-reversed pointer.
Note:
Note:
dsPIC30F1010/202X
XB = 0x0008 for a 16 word Bit-Reversed Buffer
0
0
All Bit-Reversed EA calculations assume
word sized data (LSb of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)
addresses.
Modulo addressing and Bit-Reversed
Addressing
together. In the event that the user
attempts to do this, Bit-Reversed Address-
ing will assume priority when active for the
X WAGU, and X WAGU modulo address-
ing will be disabled. However, modulo
addressing will continue to function in the
X RAGU.
Bit Locations Swapped Left-to-Right
Around Center of Binary Value
should
not
DS70178C-page 45
be
enabled
N
bytes,

Related parts for DSPIC30F2020-30I/MM