ATMEGA64A-AU Atmel, ATMEGA64A-AU Datasheet - Page 252

MCU AVR 64K ISP FLASH 64-TQFP

ATMEGA64A-AU

Manufacturer Part Number
ATMEGA64A-AU
Description
MCU AVR 64K ISP FLASH 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA64A-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
53
Interface Type
SPI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
4
Processor Series
ATMEGA64x
Core
AVR8
Data Ram Size
4 KB
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
Cpu Family
ATmega
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
For Use With
770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL
Quantity:
4 500
Part Number:
ATMEGA64A-AU
Manufacturer:
Atmel
Quantity:
900
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL85
Quantity:
900
Part Number:
ATMEGA64A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA64A-AU
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATMEGA64A-AU
Manufacturer:
AT
Quantity:
20 000
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 920
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 850
Company:
Part Number:
ATMEGA64A-AU
Quantity:
1 800
Company:
Part Number:
ATMEGA64A-AU
Quantity:
267
Company:
Part Number:
ATMEGA64A-AU
Quantity:
257
Part Number:
ATMEGA64A-AUR
Manufacturer:
Atmel
Quantity:
10 000
24. JTAG Interface and On-chip Debug System
24.1
24.2
24.3
8160C–AVR–07/09
Features
Overview
TAP – Test Access Port
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:
A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan chain can be found in the sections
ming Via the JTAG Interface” on page 314
259, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.
Figure 24-1
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several data registers as the scan chain
(Shift Register) between the TDI – input and TDO – output. The Instruction Register holds JTAG
instructions controlling the behavior of a data register.
The ID-Register, Bypass Register, and the Boundary-scan Chain are the data registers used for
board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual data registers) is used for serial programming via the JTAG interface. The Internal
Scan Chain and Break Point Scan Chain are used for On-chip debugging only.
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:
• Testing PCBs by using the JTAG Boundary-scan capability.
• Programming the non-volatile memories, Fuses and Lock bits.
• On-chip debugging.
JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
Debugger Access to:
Extensive On-chip Debug Support for Break Conditions, Including
Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
On-chip Debugging Supported by AVR Studio
– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Break Points on Single Address or Address Range
– Data Memory Break Points on Single Address or Address Range
shows a block diagram of the JTAG interface and the On-chip Debug system. The
and
®
“IEEE 1149.1 (JTAG) Boundary-scan” on page
ATmega64A
“Program-
252

Related parts for ATMEGA64A-AU