ATmega165P Atmel Corporation, ATmega165P Datasheet - Page 91

no-image

ATmega165P

Manufacturer Part Number
ATmega165P
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega165P

Flash (kbytes)
16 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
54
Ext Interrupts
17
Usb Speed
No
Usb Interface
No
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega165P-16AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165P-16ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165P-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165P-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165PA-AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega165PV-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
13.8
8019K–AVR–11/10
Timer/Counter Timing Diagrams
In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0A1:0 to three (see
The actual OC0A value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OC0A Register at the
compare match between OCR0A and TCNT0 when the counter increments, and setting (or
clearing) the OC0A Register at compare match between OCR0A and TCNT0 when the counter
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:
The N variable represents the prescale factor (1, 8, 64, 256, or 1024).
The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.
At the very start of period 2 in
even though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.
• OCR0A changes its value from MAX, like in
• The timer starts counting from a value higher than the one in OCR0A, and for that reason
The Timer/Counter is a synchronous design and the timer clock (clk
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set.
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.
Figure 13-8. Timer/Counter Timing Diagram, no Prescaling
is MAX the OCn pin value is the same as the result of a down-counting Compare Match. To
ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an
up-counting Compare Match.
misses the Compare Match and hence the OCn change that would have happened on the way
up.
TCNTn
(clk
TOVn
clk
clk
I/O
I/O
Tn
/1)
Figure 13-8
MAX - 1
contains timing data for basic Timer/Counter operation. The figure
Figure 13-7 on page 90
f
OCnxPCPWM
MAX
Figure 13-7 on page
=
----------------- -
N 510
f
clk_I/O
OCn has a transition from high to low
BOTTOM
90. When the OCR0A value
T0
ATmega165P
) is therefore shown as a
Table 13-5 on page
BOTTOM + 1
94).
91

Related parts for ATmega165P