S9S12GN16F0VLF Freescale Semiconductor, S9S12GN16F0VLF Datasheet - Page 332

no-image

S9S12GN16F0VLF

Manufacturer Part Number
S9S12GN16F0VLF
Description
16-bit Microcontrollers - MCU 16-bit16k Flash 2k RAM
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of S9S12GN16F0VLF

Rohs
yes
Core
S12
Processor Series
MC9S12G
Data Bus Width
16 bit
Maximum Clock Frequency
25 MHz
Program Memory Size
16 KB
Data Ram Size
1024 B
On-chip Adc
Yes
Operating Supply Voltage
3.13 V to 5.5 V
Operating Temperature Range
- 40 C to + 85 C
Package / Case
TSSOP-20
Mounting Style
SMD/SMT
S12S Debug Module (S12SDBGV2)
All comparators are disabled in BDM and during BDM accesses.
The comparator match control logic (see
Figure
8-23) configures comparators to monitor the buses for an
exact address or an address range, whereby either an access inside or outside the specified range generates
a match condition. The comparator configuration is controlled by the control register contents and the
range control by the DBGC2 contents.
A match can initiate a transition to another state sequencer state (see
Section 8.4.4, “State Sequence
Control”). The comparator control register also allows the type of access to be included in the comparison
through the use of the RWE, RW, SZE, and SZ bits. The RWE bit controls whether read or write
comparison is enabled for the associated comparator and the RW bit selects either a read or write access
for a valid match. Similarly the SZE and SZ bits allow the size of access (word or byte) to be considered
in the compare. Only comparators A and B feature SZE and SZ.
The TAG bit in each comparator control register is used to determine the match condition. By setting TAG,
the comparator qualifies a match with the output of opcode tracking logic and a state sequencer transition
occurs when the tagged instruction reaches the CPU execution stage. Whilst tagging the RW, RWE, SZE,
and SZ bits and the comparator data registers are ignored; the comparator address register must be loaded
with the exact opcode address.
If the TAG bit is clear (forced type match) a comparator match is generated when the selected address
appears on the system address bus. If the selected address is an opcode address, the match is generated
when the opcode is fetched from the memory, which precedes the instruction execution by an indefinite
number of cycles due to instruction pipelining. For a comparator match of an opcode at an odd address
when TAG = 0, the corresponding even address must be contained in the comparator register. Thus for an
opcode at odd address (n), the comparator register must contain address (n–1).
Once a successful comparator match has occurred, the condition that caused the original match is not
verified again on subsequent matches. Thus if a particular data value is verified at a given address, this
address may not still contain that data value when a subsequent match occurs.
Match[0, 1, 2] map directly to Comparators [A, B, C] respectively, except in range modes (see
Section 8.3.2.4, “Debug Control Register2
(DBGC2)). Comparator channel priority rules are described in
the priority section
(Section 8.4.3.4, “Channel
Priorities).
8.4.2.1
Single Address Comparator Match
With range comparisons disabled, the match condition is an exact equivalence of address bus with the
value stored in the comparator address registers. Further qualification of the type of access (R/W,
word/byte) and databus contents is possible, depending on comparator channel.
8.4.2.1.1
Comparator C
Comparator C offers only address and direction (R/W) comparison. The exact address is compared, thus
with the comparator address register loaded with address (n) a word access of address (n–1) also accesses
(n) but does not cause a match.
MC9S12G Family Reference Manual, Rev.1.23
334
Freescale Semiconductor

Related parts for S9S12GN16F0VLF