IC CTRLR PWM 1PHASE SO-8

L6726A

Manufacturer Part NumberL6726A
DescriptionIC CTRLR PWM 1PHASE SO-8
ManufacturerSTMicroelectronics
TypeStep-Down (Buck)
L6726A datasheet
 


Specifications of L6726A

Internal Switch(s)NoSynchronous RectifierNo
Number Of Outputs1Voltage - OutputAdj to 0.8V
Frequency - Switching270kHzVoltage - Input1.5 ~ 12 V
Operating Temperature-20°C ~ 85°CMounting TypeSurface Mount
Package / Case8-SOIC (3.9mm Width)Output Current1.5 A
Input Voltage4.1 V to 13.2 VOperating Temperature Range- 40 C to + 150 C
Mounting StyleSMD/SMTFor Use With497-9046 - BOARD EVAL BASED ON L6726A497-6364 - BOARD DEMO FOR TS4995EIJT497-6259 - BOARD EVAL 1PH STPDN CONV L6726A
Lead Free Status / RoHS StatusLead free / RoHS CompliantCurrent - Output-
Power - Output-  
1
2
3
4
5
6
7
8
9
10
11
Page 11
12
Page 12
13
Page 13
14
Page 14
15
Page 15
16
Page 16
17
Page 17
18
Page 18
19
Page 19
20
Page 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Page 11/35

Download datasheet (987Kb)Embed
PrevNext
L6726A
5.1
Power dissipation
L6726A embeds high current MOSFET drivers for both high side and low side MOSFETs: it
is then important to consider the power that the device is going to dissipate in driving them
in order to avoid overcoming the maximum junction operative temperature.
Two main terms contribute in the device power dissipation: bias power and drivers power.
Device bias power (P
supply pins and it is simply quantifiable as follow (assuming to supply HS and LS
drivers with the same VCC of the device):
Drivers power is the power needed by the driver to continuously switch on and off the
external MOSFETs; it is a function of the switching frequency, the voltage supply of the
driver and total gate charge of the selected MOSFETs. It can be quantified considering
that the total power P
dissipated by three main factors: external gate resistance (when present), intrinsic
MOSFET resistance and intrinsic driver resistance. This last term is the important one
to be determined to calculate the device power dissipation. The total power dissipated
to switch the MOSFETs results:
P
SW
where V
BOOT
External gate resistors helps the device to dissipate the switching power since the same
power P
will be shared between the internal driver impedance and the external resistor
SW
resulting in a general cooling of the device.
Figure 4.
Soft start (left) and disable (right)
) depends on the static consumption of the device through the
DC
(
P
=
V
I
DC
CC
CC
dissipated to switch the MOSFETs (easy calculable) is
SW
[
(
F
Q
V
=
SW
gHS
BOOT
- V
is the voltage across the bootstrap capacitor.
PHASE
Doc ID 12754 Rev 4
Driver section
)
+
I
BOOT
)
]
V
Q
V
+
PHASE
gLS
CC
11/35