AT91SAM9XE512-QU Atmel, AT91SAM9XE512-QU Datasheet - Page 673

MCU ARM9 512K FLASH 208-PQFP

AT91SAM9XE512-QU

Manufacturer Part Number
AT91SAM9XE512-QU
Description
MCU ARM9 512K FLASH 208-PQFP
Manufacturer
Atmel
Series
AT91SAMr
Datasheet

Specifications of AT91SAM9XE512-QU

Core Processor
ARM9
Core Size
16/32-Bit
Speed
180MHz
Connectivity
EBI/EMI, Ethernet, I²C, MMC, SPI, SSC, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
96
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
56K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Data Converters
A/D 4x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
208-MQFP, 208-PQFP
Controller Family/series
AT91SAM9xxxxx
No. Of I/o's
96
Ram Memory Size
32KB
Cpu Speed
180MHz
No. Of Timers
2
Rohs Compliant
Yes
Data Bus Width
32 bit
Data Ram Size
32 KB
Interface Type
2-Wire, EBI, I2S, SPI, USART
Maximum Clock Frequency
180 MHz
Number Of Programmable I/os
96
Number Of Timers
6
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 4 Channel
Package
208PQFP
Device Core
ARM926EJ-S
Family Name
91S
Maximum Speed
180 MHz
Operating Supply Voltage
1.8|2.5|3.3 V
For Use With
AT91SAM9XE-EK - KIT EVAL FOR AT91SAM9XEAT91SAM-ICE - EMULATOR FOR AT91 ARM7/ARM9
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM9XE512-QU
Manufacturer:
VISHAY
Quantity:
40 000
Part Number:
AT91SAM9XE512-QU
Manufacturer:
Atmel
Quantity:
58
Part Number:
AT91SAM9XE512-QU
Manufacturer:
Atmel
Quantity:
10 000
38.4.1.7
6254C–ATARM–22-Jan-10
Receiving Frames
When a frame is received and the receive circuits are enabled, the EMAC checks the address
and, in the following cases, the frame is written to system memory:
The register receive buffer queue pointer points to the next entry (see
and the EMAC uses this as the address in system memory to write the frame to. Once the frame
has been completely and successfully received and written to system memory, the EMAC then
updates the receive buffer descriptor entry with the reason for the address match and marks the
area as being owned by software. Once this is complete an interrupt receive complete is set.
Software is then responsible for handling the data in the buffer and then releasing the buffer by
writing the ownership bit back to 0.
If the EMAC is unable to write the data at a rate to match the incoming frame, then an interrupt
receive overrun is set. If there is no receive buffer available, i.e., the next buffer is still owned by
software, the interrupt receive buffer not available is set. If the frame is not successfully
received, a statistic register is incremented and the frame is discarded without informing
software.
8. Write to the transmit start bit in the network control register.
• if it matches one of the four specific address registers.
• if it matches the hash address function.
• if it is a broadcast address (0xFFFFFFFFFFFF) and broadcasts are allowed.
• if the EMAC is configured to copy all frames.
AT91SAM9XE128/256/512 Preliminary
Table 38-1 on page
661)
673

Related parts for AT91SAM9XE512-QU