ATMEGA32U4-AU Atmel, ATMEGA32U4-AU Datasheet - Page 239

MCU AVR 32K FLASH 16MHZ 44-TQFP

ATMEGA32U4-AU

Manufacturer Part Number
ATMEGA32U4-AU
Description
MCU AVR 32K FLASH 16MHZ 44-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar

Specifications of ATMEGA32U4-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
26
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2.5K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 12x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
44-TQFP, 44-VQFP
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2.5 KB
Interface Type
SPI/TWI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
26
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
12-ch x 10-bit
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
2.5KB
# I/os (max)
26
Number Of Timers - General Purpose
5
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
44
Package Type
TQFP
Controller Family/series
AVR MEGA
No. Of I/o's
26
Eeprom Memory Size
1KB
Ram Memory Size
2.5KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
ATMEGA32U4-16AU
ATMEGA32U4-16AU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32U4-AU
Manufacturer:
FREESCALE
Quantity:
125
Part Number:
ATMEGA32U4-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA32U4-AU
Manufacturer:
MICROCHIP
Quantity:
200
Part Number:
ATMEGA32U4-AUR
Manufacturer:
Atmel
Quantity:
10 000
7766F–AVR–11/10
Figure 20-12. Data Transfer in Master Transmitter Mode
A START condition is sent by writing the following value to TWCR:
TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to trans-
mit a START condition and TWINT must be written to one to clear the TWINT Flag. The TWI will
then test the 2-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and the
status code in TWSR will be 0x08 (see
transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-
ing value to TWCR:
When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in
When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:
This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:
A REPEATED START condition is generated by writing the following value to TWCR:
TWCR
value
TWCR
value
TWCR
value
TWCR
value
TWCR
value
SDA
SCL
TWINT
TWINT
TWINT
TWINT
TWINT
Table
1
1
1
1
1
20-3.
TRANSMITTER
Device 1
MASTER
TWEA
TWEA
TWEA
TWEA
TWEA
X
X
X
X
X
Device 2
TWSTA
TWSTA
TWSTA
TWSTA
TWSTA
RECEIVER
SLAVE
1
0
0
0
1
Table
TWSTO
TWSTO
TWSTO
TWSTO
TWSTO
Device 3
0
0
0
1
0
20-3). In order to enter MT mode, SLA+W must be
TWWC
TWWC
TWWC
TWWC
TWWC
........
X
X
X
X
X
Device n
TWEN
TWEN
TWEN
TWEN
TWEN
V
1
1
1
1
1
CC
ATmega16/32U4
R1
0
0
0
0
0
R2
TWIE
TWIE
TWIE
TWIE
TWIE
X
X
X
X
X
239

Related parts for ATMEGA32U4-AU