AT32UC3B0512-Z2UR Atmel, AT32UC3B0512-Z2UR Datasheet - Page 176

IC MCU AVR32 512K FLASH 64QFN

AT32UC3B0512-Z2UR

Manufacturer Part Number
AT32UC3B0512-Z2UR
Description
IC MCU AVR32 512K FLASH 64QFN
Manufacturer
Atmel
Series
AVR®32 UC3r
Datasheet

Specifications of AT32UC3B0512-Z2UR

Package / Case
64-QFN
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Operating Temperature
-40°C ~ 85°C
Speed
60MHz
Number Of I /o
44
Core Processor
AVR
Program Memory Type
FLASH
Ram Size
96K x 8
Program Memory Size
512KB (512K x 8)
Data Converters
A/D 8x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, DMA, POR, PWM, WDT
Connectivity
I²C, IrDA, SPI, SSC, UART/USART, USB
Core Size
32-Bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3B0512-Z2UR
Manufacturer:
ATMEL
Quantity:
2 010
17.5.3
17.5.4
32059J–12/2010
Interrupts
Interrupt Timings
The GPIO can be configured to generate an interrupt when it detects an input change on an I/O
line. The module can be configured to signal an interrupt whenever a pin changes value or only
to trigger on rising edges or falling edges. Interrupts are enabled on a pin by writing a one to the
corresponding bit in the Interrupt Enable Register (IER). The interrupt mode is set by writing to
the Interrupt Mode Register 0 (IMR0) and the Interrupt Mode Register 1(IMR1). Interrupts can be
enabled on a pin, regardless of the configuration of the I/O line, i.e. whether it is controlled by the
GPIO or assigned to a peripheral function.
In every port there are four interrupt lines connected to the interrupt controller. Groups of eight
interrupts in the port are ORed together to form an interrupt line.
When an interrupt event is detected on an I/O line, and the corresponding bit in IER is written to
one, the GPIO interrupt request line is asserted. A number of interrupt signals are ORed-wired
together to generate a single interrupt signal to the interrupt controller.
The Interrupt Flag Register (IFR) can by read to determine which pin(s) caused the interrupt.
The interrupt bit must be cleared by writing a one to the Interrupt Flag Clear Register (IFRC). To
take effect, the clear operation must be performed when the interrupt line is enabled in IER. Oth-
erwise, it will be ignored.
GPIO interrupts can only be triggered when the CLK_GPIO is enabled.
The figure below shows the timing for rising edge (or pin-change) interrupts when the glitch filter
is disabled. For the pulse to be registered, it must be sampled at the rising edge of the clock. In
this example, this is not the case for the first pulse. The second pulse is however sampled on a
rising edge and will trigger an interrupt request.
Figure 17-4. Interrupt Timing With Glitch Filter Disabled
The figure below shows the timing for rising edge (or pin-change) interrupts when the glitch filter
is enabled. For the pulse to be registered, it must be sampled on two subsequent rising edges.
In the example, the first pulse is rejected while the second pulse is accepted and causes an
interrupt request.
Figure 17-5. Interrupt Timing With Glitch Filter Enabled
GPIO_IFR
GPIO_IFR
Pin Level
Pin Level
clock
clock
AT32UC3B
176

Related parts for AT32UC3B0512-Z2UR