MC912DG128ACPV Freescale Semiconductor, MC912DG128ACPV Datasheet - Page 196

no-image

MC912DG128ACPV

Manufacturer Part Number
MC912DG128ACPV
Description
IC MCU 128K FLASH 8MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HC12r
Datasheet

Specifications of MC912DG128ACPV

Core Processor
CPU12
Core Size
16-Bit
Speed
8MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
69
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 16x8/10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC912DG128ACPV
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128ACPV
Manufacturer:
FREE
Quantity:
20 000
Part Number:
MC912DG128ACPV 5K91D
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC912DG128ACPVE
Manufacturer:
MICREL
Quantity:
9 982
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 200
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 970
Part Number:
MC912DG128ACPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 970
Part Number:
MC912DG128ACPVER
Manufacturer:
STM
Quantity:
1 244
Part Number:
MC912DG128ACPVER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Oscillator
13.3.2 MC68HC912DT128A Oscillator Design Guidelines
Technical Data
196
NOTE:
Proper and robust operation of the oscillator circuit requires excellent
board layout design practice. Poor layout of the application board can
contribute to EMC susceptibility, noise generation, slow starting
oscillators, and reaction to noise on the clock input buffer. In addition to
published errata for the MC68HC912DT128A, the following guidelines
must be followed or failure in operation may occur.
An increase in the EXTAL–XTAL parasitic as a result of reducing
EXTAL–VSS parasitic is acceptable provided component value is
reduced by the appropriate value.
Freescale Semiconductor, Inc.
For More Information On This Product,
Minimize Capacitance to VSS on EXTAL pin — The Colpitts
oscillator architecture is sensitive to capacitance in parallel with
the resonator (from EXTAL to VSS). Follow these techniques:
Shield all oscillator components from all noisy traces (while
observing above guideline).
Keep the VSSPLL pin and the VSS reference to the oscillator
as identical as possible. Impedance between these signals must
be minimum.
Observe best practice supply bypassing on all MCU power
pins. The oscillator’s supply reference is VDD, not VDPLL.
Account for XTAL–VSS and EXTAL–XTAL parasitics in
component values.
Minimize XTAL and EXTAL routing lengths to reduce EMC
issues.
iii. Where possible, use XTAL as a shield between EXTAL
iv. Keep EXTAL capacitance to less than 1pF (2pF
ii. Observe a minimum spacing from the EXTAL trace to
i. Remove ground plane from all layers around resonator
Go to: www.freescale.com
and EXTAL route
all other traces of at least three times the design rule
minimum (until the microcontroller’s pin pitch prohibits
this guideline)
and VSS
absolute maximum)
Oscillator
MC68HC912DT128A — Rev 4.0
MOTOROLA

Related parts for MC912DG128ACPV