SI1005-C-GM Silicon Laboratories Inc, SI1005-C-GM Datasheet - Page 130

IC TXRX MCU + EZRADIOPRO

SI1005-C-GM

Manufacturer Part Number
SI1005-C-GM
Description
IC TXRX MCU + EZRADIOPRO
Manufacturer
Silicon Laboratories Inc
Datasheets

Specifications of SI1005-C-GM

Package / Case
42-QFN
Frequency
240MHz ~ 960MHz
Data Rate - Maximum
256kbps
Modulation Or Protocol
FSK, GFSK, OOK
Applications
General Purpose
Power - Output
13dBm
Sensitivity
-121dBm
Voltage - Supply
0.9 V ~ 1.8 V
Current - Receiving
18.5mA
Current - Transmitting
30mA
Data Interface
PCB, Surface Mount
Memory Size
32kB Flash, 4kB RAM
Antenna Connector
PCB, Surface Mount
Number Of Receivers
1
Number Of Transmitters
1
Wireless Frequency
240 MHz to 960 MHz
Interface Type
UART, SMBus, SPI, PCA
Output Power
13 dBm
Operating Supply Voltage
0.9 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Maximum Supply Current
4.1 mA
Minimum Operating Temperature
- 40 C
Modulation
FSK, GFSK, OOK
Protocol Supported
C2, SMBus
Core
8051
Program Memory Type
Flash
Program Memory Size
32 KB
Data Ram Size
4352 B
Supply Current (max)
4.1 mA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Operating Temperature
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1875-5

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
SI1005-C-GM
Manufacturer:
Silicon Labs
Quantity:
135
Si1000/1/2/3/4/5
12.3. Interrupt Priorities
Each interrupt source can be individually programmed to one of two priority levels: low or high. A low prior-
ity interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be
preempted. If a high priority interrupt preempts a low priority interrupt, the low priority interrupt will finish
execution after the high priority interrupt completes. Each interrupt has an associated interrupt priority bit in
in the Interrupt Priority and Extended Interrupt Priority registers used to configure its priority level. Low pri-
ority is the default.
If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both
interrupts have the same priority level, a fixed priority order is used to arbitrate. See Table 12.1 on
page 131 to determine the fixed priority order used to arbitrate between simultaneously recognized inter-
rupts.
12.4. Interrupt Latency
Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are
sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 7
system clock cycles: 1 clock cycle to detect the interrupt, 1 clock cycle to execute a single instruction, and
5 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a sin-
gle instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maxi-
mum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt
is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next
instruction. In this case, the response time is 19 system clock cycles: 1 clock cycle to detect the interrupt,
5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 5 clock cycles to
execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority,
the new interrupt will not be serviced until the current ISR completes, including the RETI and following
instruction.
130
Rev. 1.0

Related parts for SI1005-C-GM