PIC18F87J60-I/PT Microchip Technology, PIC18F87J60-I/PT Datasheet - Page 211

no-image

PIC18F87J60-I/PT

Manufacturer Part Number
PIC18F87J60-I/PT
Description
IC PIC MCU FLASH 64KX16 80TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F87J60-I/PT

Program Memory Type
FLASH
Program Memory Size
128KB (64K x 16)
Package / Case
80-TFQFP
Core Processor
PIC
Core Size
8-Bit
Speed
41.667MHz
Connectivity
Ethernet, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
55
Ram Size
3808 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 15x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3808 B
Interface Type
Display Driver/Ethernet/EUSART/I2C/MSSP/SPI
Maximum Clock Frequency
41.667 MHz
Number Of Programmable I/os
55
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM183033, DV164136
Minimum Operating Temperature
- 40 C
On-chip Adc
15-ch x 10-bit
Package
80TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
41.667 MHz
Operating Supply Voltage
1.8|2.5|3.3 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC162064 - HEADER INTFC MPLABICD2 64/80/100AC164323 - MODULE SKT FOR 100TQFP
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F87J60-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F87J60-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
18.2.1
The Ethernet buffer contains the transmit and receive
memory used by the Ethernet controller. The entire
buffer is 8 Kbytes, divided into separate receive and
transmit buffer spaces. The sizes and locations of
transmit and receive memory are fully definable using
the pointers in the Ethernet SFR space. The organiza-
tion of the memory space and the relationships of the
pointers are shown in Figure 18-4.
The buffer is always accessible through the EDATA and
Ethernet Pointer SFRs, regardless of whether or not the
Ethernet module is enabled. This makes the buffer
potentially useful for applications requiring large amounts
of RAM and that do not require Ethernet communication.
In these instances, disabling the Ethernet module
reduces overall power usage but does not prevent buffer
access.
18.2.1.1
The Ethernet buffer contents are accessed through the
EDATA register, which acts as a window from the
microcontroller data bus into the buffer. The location of
that window is determined by either the ERDPT or
EWRPT Pointers, depending on the operation being
performed. For example, writing to EDATA causes a
write to the Ethernet buffer at the address currently
indicated by EWRPT register pair. Similarly, moving the
contents of EDATA to another register actually moves
the buffer contents at the address indicated by the
ERDPT Pointer.
When the AUTOINC bit (ECON2<7>) is set, the asso-
ciated Read or Write Pointer increments by one
address following each read or write operation. This
eliminates the need to constantly update a pointer after
each read or write, simplifying multiple sequential
operations. By default, the AUTOINC bit is set.
While sequentially reading from the receive buffer, a
wrapping condition will occur at the end of the receive
buffer. A read of EDATA from the address programmed
into the ERXND Pointers will cause the ERDPT
registers to be incremented to the value contained in
the ERXST Pointers. Writing to the buffer, on the other
hand, does not result in automatic wrapping.
© 2007 Microchip Technology Inc.
ETHERNET BUFFER AND BUFFER
POINTER REGISTERS
Reading and Writing to the Buffer
Preliminary
PIC18F97J60 FAMILY
By design, the Ethernet memory buffer is unable to
support a set of operations where EDATA is used as
both an operand and a data destination. Failure to
observe these restrictions will result in a corrupted read
or write. Also, due to the read-modify-write architecture
of the processor core, single-cycle instructions which
write to the EDATA register will have a side effect of
automatically incrementing the ERDPT registers when
AUTOINC is set. Using double-cycle MOVFF, MOVSF
and MOVSS instructions to write to EDATA will not affect
the Read Pointer. See the following note for examples.
Note:
Any single instruction that performs both a
read and write to the EDATA SFR register
will result in a corrupted operation.
Unsupported examples:
Instructions that only perform one read or
one write are permitted.
Supported examples:
Single-cycle, write-only instructions, while
valid, will have a side effect of also incre-
menting the ERDPT registers when
AUTOINC is enabled.
Examples incrementing both ERDPT and
EWRPT:
INCF
XORWF
MOVFF
MOVFF
INCF
MOVF
MOVFF
CLRF
SETF
MOVWF
EDATA, F
EDATA, F
EDATA, EDATA
INDF0, EDATA; (FSR0 = F61h)
EDATA, W
EDATA, W
INDF0, EDATA; (FSR0 != F61h)
EDATA
EDATA
EDATA
DS39762C-page 209

Related parts for PIC18F87J60-I/PT