AT90USB1287-AU Atmel, AT90USB1287-AU Datasheet - Page 125

IC AVR MCU 128K 64TQFP

AT90USB1287-AU

Manufacturer Part Number
AT90USB1287-AU
Description
IC AVR MCU 128K 64TQFP
Manufacturer
Atmel
Series
AVR® 90USBr
Datasheets

Specifications of AT90USB1287-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART, USB, USB OTG
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
48
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
AT90USBx
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
8 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
48
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATSTK525, ATAVRISP2, ATAVRONEKIT, AT90USBKEY, ATEVK525, ATAVRQTOUCHX
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Controller Family/series
AVR USB
No. Of I/o's
48
Eeprom Memory Size
4KB
Ram Memory Size
8KB
Cpu Speed
20MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATSTK525 - KIT STARTER FOR AT90USBAT90USBKEY2 - KIT DEMO FOR AT90USB
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
AT90USB1287-16AU
AT90USB1287-16AU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90USB1287-AU
Manufacturer:
ATMEL
Quantity:
1 459
Part Number:
AT90USB1287-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB1287-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT90USB1287-AU
Quantity:
90
Part Number:
AT90USB1287-AUR
Manufacturer:
Atmel
Quantity:
10 000
14.5.1
14.5.2
14.5.3
7593K–AVR–11/09
Input Capture Trigger Source
Noise Canceler
Using the Input Capture Unit
The ICRn Register can only be written when using a Waveform Generation mode that utilizes
the ICRn Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH I/O location
before the low byte is written to ICRnL.
For more information on how to access the 16-bit registers refer to
on page
The main trigger source for the input capture unit is the Input Capture Pin (ICPn).
Timer/Counter1 can alternatively use the analog comparator output as trigger source for the
input capture unit. The Analog Comparator is selected as trigger source by setting the analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The input capture flag
must therefore be cleared after the change.
Both the Input Capture Pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the Tn pin
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICRn to define TOP.
An input capture can be triggered by software by controlling the port of the ICPn pin.
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.
The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICRn Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will be
overwritten with a new value. In this case the result of the capture will be incorrect.
When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.
Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.
Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICRn
119.
(Figure 1 on page
98). The edge detector is also
AT90USB64/128
“Accessing 16-bit Registers”
125

Related parts for AT90USB1287-AU