AT90USB1287-AU Atmel, AT90USB1287-AU Datasheet - Page 229

IC AVR MCU 128K 64TQFP

AT90USB1287-AU

Manufacturer Part Number
AT90USB1287-AU
Description
IC AVR MCU 128K 64TQFP
Manufacturer
Atmel
Series
AVR® 90USBr
Datasheets

Specifications of AT90USB1287-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART, USB, USB OTG
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
48
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
AT90USBx
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
8 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
48
Number Of Timers
4
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATSTK525, ATAVRISP2, ATAVRONEKIT, AT90USBKEY, ATEVK525, ATAVRQTOUCHX
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Controller Family/series
AVR USB
No. Of I/o's
48
Eeprom Memory Size
4KB
Ram Memory Size
8KB
Cpu Speed
20MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATSTK525 - KIT STARTER FOR AT90USBAT90USBKEY2 - KIT DEMO FOR AT90USB
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
AT90USB1287-16AU
AT90USB1287-16AU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90USB1287-AU
Manufacturer:
ATMEL
Quantity:
1 459
Part Number:
AT90USB1287-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB1287-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT90USB1287-AU
Quantity:
90
Part Number:
AT90USB1287-AUR
Manufacturer:
Atmel
Quantity:
10 000
7593K–AVR–11/09
Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:
In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.
5. The application software should now examine the value of TWSR, to make sure that the
6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and
7. The application software should now examine the value of TWSR, to make sure that the
• When the TWI has finished an operation and expects application response, the TWINT Flag
• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant
• After all TWI Register updates and other pending application software tasks have been
is set. The SCL line is pulled low until TWINT is cleared.
for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be
transmitted in the next bus cycle.
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting.
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must load a data packet into TWDR. Subsequently, a specific value
must be written to TWCR, instructing the TWI hardware to transmit the data packet
present in TWDR. Which value to write is described later on. However, it is important
that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag.
The TWI will not start any operation as long as the TWINT bit in TWCR is set. Immedi-
ately after the application has cleared TWINT, the TWI will initiate transmission of the
data packet.
TWSR is updated with a status code indicating that the data packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet
or not.
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must write a specific value to TWCR, instructing the TWI hardware to
transmit a STOP condition. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission
of the STOP condition. Note that TWINT is NOT set after a STOP condition has been
sent.
AT90USB64/128
229

Related parts for AT90USB1287-AU