AT91SAM7S256C-MU Atmel, AT91SAM7S256C-MU Datasheet - Page 164

IC ARM7 MCU 32BIT 256K 64-QFN

AT91SAM7S256C-MU

Manufacturer Part Number
AT91SAM7S256C-MU
Description
IC ARM7 MCU 32BIT 256K 64-QFN
Manufacturer
Atmel
Series
AT91SAMr

Specifications of AT91SAM7S256C-MU

Core Processor
ARM7
Core Size
16/32-Bit
Speed
55MHz
Connectivity
I²C, SPI, SSC, UART/USART, USB
Peripherals
Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VQFN Exposed Pad, 64-HVQFN, 64-SQFN, 64-DHVQFN
Processor Series
AT91
Core
ARM7TDMI
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
SPI, TWI, USART, USB
Maximum Clock Frequency
55 MHz
Number Of Programmable I/os
32
Number Of Timers
5
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Operating Temperature Range
- 40 C to + 85 C
For Use With
AT91SAM-ICE - EMULATOR FOR AT91 ARM7/ARM9AT91SAM7S-EK - KIT EVAL FOR ARM AT91SAM7S
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
AT91SAM7S256-MU
AT91SAM7S256-MU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7S256C-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
23.7
23.7.1
23.7.1.1
23.7.1.2
23.7.1.3
23.7.1.4
164
Functional Description
AT91SAM7S Series Preliminary
Interrupt Source Control
Interrupt Source Mode
Interrupt Source Enabling
Interrupt Clearing and Setting
Interrupt Status
The Advanced Interrupt Controller independently programs each interrupt source. The SRC-
TYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.
The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be
programmed either in level-sensitive mode or in edge-triggered mode. The active level of the
internal interrupts is not important for the user.
The external interrupt sources can be programmed either in high level-sensitive or low level-sen-
sitive modes, or in positive edge-triggered or negative edge-triggered modes.
Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register). This set of registers conducts enabling or disabling in one instruc-
tion. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does not affect
servicing of other interrupts.
All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clear-
ing or setting interrupt sources programmed in level-sensitive mode has no effect.
The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also be
used to execute an AIC-implementation of a software interrupt.
The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector
Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is
affected by this operation.
the operations required by the interrupt service routine entry code to reading the AIC_IVR. Note
that the automatic interrupt clear is disabled if the interrupt source has the Fast Forcing feature
enabled as it is considered uniquely as a FIQ source. (For further details,
page
The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.
For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its
mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources,
whether masked or not.
The AIC_ISR register reads the number of the current interrupt (see
168) and the register AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the
processor.
Each status referred to above can be used to optimize the interrupt handling of the systems.
172.)
(See “Priority Controller” on page
168.) The automatic clear reduces
“Priority Controller” on page
See “Fast Forcing” on
6175K–ATARM–30-Aug-10

Related parts for AT91SAM7S256C-MU