PIC24HJ64GP502-E/MM Microchip Technology, PIC24HJ64GP502-E/MM Datasheet - Page 27

IC PIC MCU FLASH 64K 28-QFN

PIC24HJ64GP502-E/MM

Manufacturer Part Number
PIC24HJ64GP502-E/MM
Description
IC PIC MCU FLASH 64K 28-QFN
Manufacturer
Microchip Technology
Series
PIC® 24Hr

Specifications of PIC24HJ64GP502-E/MM

Program Memory Type
FLASH
Program Memory Size
64KB (22K x 24)
Package / Case
28-QFN
Core Processor
PIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
CAN, I²C, IrDA, LIN, PMP, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number Of I /o
21
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 10x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Processor Series
PIC24HJ
Core
PIC
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
I2C/SPI/UART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
21
Number Of Timers
5
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM300027
Minimum Operating Temperature
- 40 C
On-chip Adc
10-ch x 10-bit or 10-ch x 12-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164336 - MODULE SOCKET FOR PM3 28/44QFN
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
4.2
The PIC24HJ32GP302/304, PIC24HJ64GPX02/X04
and PIC24HJ128GPX02/X04 CPU has a separate
16-bit-wide data memory space. The data space is
accessed using separate Address Generation Units
(AGUs) for read and write operations. The data
memory maps are shown in Figure 4-3 and Figure 4-4.
All Effective Addresses (EAs) in the data memory space
are 16 bits wide and point to bytes within the data space.
This arrangement gives a data space address range of
64 Kbytes or 32K words. The lower half of the data
memory space (that is, when EA<15> = 0) is used for
implemented memory addresses, while the upper half
(EA<15> = 1) is reserved for the Program Space
Visibility area (see Section 4.4.3 “Reading Data from
Program Memory Using Program Space Visibility”).
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and
PIC24HJ128GPX02/X04 devices implement up to
8 Kbytes of data memory. Should an EA point to a
location outside of this area, an all-zero word or byte is
returned.
4.2.1
The data memory space is organized in byte
addressable, 16-bit wide blocks. Data is aligned in data
memory and registers as 16-bit words, but all data
space EAs resolve to bytes. The Least Significant
Bytes (LSBs) of each word have even addresses, while
the Most Significant Bytes (MSBs) have odd
addresses.
4.2.2
To maintain backward compatibility with PIC
devices and improve data space memory usage
efficiency,
PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04
instruction set supports both word and byte operations.
As a consequence of byte accessibility, all effective
address calculations are internally scaled to step
through word-aligned memory. For example, the core
recognizes
Addressing mode [Ws++] results in a value of Ws + 1
for byte operations and Ws + 2 for word operations.
A data byte read, reads the complete word that
contains the byte, using the LSB of any EA to
determine which byte to select. The selected byte is
placed onto the LSB of the data path. That is, data
memory and registers are organized as two parallel
byte-wide entities with shared (word) address decode
but separate write lines. Data byte writes only write to
the corresponding side of the array or register that
matches the byte address.
© 2009 Microchip Technology Inc.
Data Address Space
DATA SPACE WIDTH
DATA MEMORY ORGANIZATION
AND ALIGNMENT
that
the
Post-Modified
PIC24HJ32GP302/304,
Register
®
Indirect
MCU
Preliminary
All word accesses must be aligned to an even address.
Misaligned word data fetches are not supported, so
care must be taken when mixing byte and word
operations, or translating from 8-bit MCU code. If a
misaligned read or write is attempted, an address error
trap is generated. If the error occurred on a read, the
instruction underway is completed. If the error occurred
on a write, the instruction is executed but the write does
not occur. In either case, a trap is then executed,
allowing the system and/or user application to examine
the machine state prior to execution of the address
Fault.
All byte loads into any W register are loaded into the
Least Significant Byte. The Most Significant Byte is not
modified.
A sign-extend instruction (SE) is provided to allow user
applications to translate 8-bit signed data to 16-bit
signed values. Alternatively, for 16-bit unsigned data,
user applications can clear the MSB of any W register
by executing a zero-extend (ZE) instruction on the
appropriate address.
4.2.3
The first 2 Kbytes of the Near Data Space, from 0x0000
to 0x07FF, is primarily occupied by Special Function
Registers
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and
PIC24HJ128GPX02/X04 core and peripheral modules
for controlling the operation of the device.
SFRs are distributed among the modules that they
control, and are generally grouped together by module.
Much of the SFR space contains unused addresses;
these are read as ‘0’.
4.2.4
The 8 Kbyte area between 0x0000 and 0x1FFF is
referred to as the near data space. Locations in this
space are directly addressable via a 13-bit absolute
address field within all memory direct instructions.
Additionally, the whole data space is addressable using
MOV instructions, which support Memory Direct
Addressing mode with a 16-bit address field, or by
using Indirect Addressing mode using a working
register as an address pointer.
Note:
SFR SPACE
The actual set of peripheral features and
interrupts varies by the device. Refer to
the corresponding device tables and
pinout diagrams for device-specific
information.
NEAR DATA SPACE
(SFRs).
These
are
DS70293D-page 27
used
by
the

Related parts for PIC24HJ64GP502-E/MM