ATTINY861-15MZ Atmel, ATTINY861-15MZ Datasheet - Page 165

MCU AVR 8K FLASH 15MHZ 32-QFN

ATTINY861-15MZ

Manufacturer Part Number
ATTINY861-15MZ
Description
MCU AVR 8K FLASH 15MHZ 32-QFN
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheet

Specifications of ATTINY861-15MZ

Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Operating Temperature
-40°C ~ 125°C
Speed
16MHz
Number Of I /o
16
Eeprom Size
512 x 8
Core Processor
AVR
Program Memory Type
FLASH
Ram Size
512 x 8
Program Memory Size
8KB (8K x 8)
Data Converters
A/D 11x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Connectivity
USI
Core Size
8-Bit
Processor Series
ATTINY8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SPI
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
16
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATAVRMC320
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 11 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY861-15MZ
Manufacturer:
ATMEL
Quantity:
1 465
21.1.2
21.1.3
2588B–AVR–11/06
Reading the Fuse and Lock Bits from Software
Preventing Flash Corruption
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the RFLB and SPMEN bits in SPMCSR. When an LPM instruction
is executed within three CPU cycles after the RFLB and SPMEN bits are set in SPMCSR, the
value of the Lock bits will be loaded in the destination register. The RFLB and SPMEN bits will
auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed within
three CPU cycles or no SPM instruction is executed within four CPU cycles. When RFLB and
SPMEN are cleared, LPM will work as described in the Instruction set Manual.
The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the RFLB and
SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
RFLB and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be
loaded in the destination register as shown below. Refer to
detailed description and mapping of the Fuse Low byte.
Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the RFLB and SPMEN bits are set in the SPMCSR, the
value of the Fuse High byte (FHB) will be loaded in the destination register as shown below.
Refer to Table XXX on page XXX for detailed description and mapping of the Fuse High byte.
Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.
During periods of low V
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.
A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.
Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):
1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
2. Keep the AVR core in Power-down sleep mode during periods of low V
Bit
Rd
Bit
Rd
Bit
Rd
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low V
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.
7
7
FLB7
7
FHB7
6
6
FLB6
6
FHB6
CC
, the Flash program can be corrupted because the supply voltage is
5
FLB5
5
5
FHB5
4
FLB4
4
FHB4
4
3
3
FLB3
3
FHB3
CC
ATtiny261/461/861
2
2
FLB2
2
FHB2
reset protection circuit can be
Table 22-5 on page 170
1
LB2
1
FLB1
1
FHB1
CC
. This will pre-
0
LB1
0
FLB0
0
FHB0
for a
165

Related parts for ATTINY861-15MZ