PIC16F724-E/MV Microchip Technology, PIC16F724-E/MV Datasheet - Page 182

7KB Flash Program, 1.8V-5.5V, 16MHz Internal Oscillator, 8b ADC, CCP, I2C/SPI, A

PIC16F724-E/MV

Manufacturer Part Number
PIC16F724-E/MV
Description
7KB Flash Program, 1.8V-5.5V, 16MHz Internal Oscillator, 8b ADC, CCP, I2C/SPI, A
Manufacturer
Microchip Technology
Series
PIC® XLP™ 16Fr
Datasheet

Specifications of PIC16F724-E/MV

Processor Series
PIC16F
Core
PIC
Program Memory Type
Flash
Program Memory Size
7 KB
Data Ram Size
192 B
Interface Type
I2C, SPI, AUSART
Number Of Timers
3
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
Package / Case
UQFN-40
Development Tools By Supplier
MPLAB IDE Software
Minimum Operating Temperature
- 40 C
Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
36
Eeprom Size
-
Ram Size
192 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 14x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Lead Free Status / Rohs Status
 Details
PIC16F72X/PIC16LF72X
17.2.6
When the R/W bit of the received address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set and the slave will respond to
the master by reading out data. After the address match,
an ACK pulse is generated by the slave hardware and
the SCL pin is held low (clock is automatically stretched)
until the slave is ready to respond. See Section 17.2.7
“Clock Stretching”. The data the slave will transmit
must be loaded into the SSPBUF register, which sets
the BF bit. The SCL line is released by setting the CKP
bit of the SSPCON register.
An SSP interrupt is generated for each transferred data
byte. The SSPIF flag bit of the PIR1 register initiates an
SSP interrupt, and must be cleared by software before
the next byte is transmitted. The BF bit of the SSPSTAT
register is cleared on the falling edge of the 8th
received clock pulse. The SSPIF flag bit is set on the
falling edge of the ninth clock pulse.
FIGURE 17-12:
DS41341E-page 182
SDA
SCL
SSPIF
BF
CKP
S
TRANSMISSION
A7
1
Data in
sampled
A6
2
I
2
C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)
A5
Receiving Address
3
A4
4
Dummy read of SSPBUF
A3
5
A2
6
to clear BF flag
A1
7
R/W
8
9
ACK
responds to SSPIF
SCL held low
while CPU
Following the 8th falling clock edge, control of the SDA
line is released back to the master so that the master
can acknowledge or not acknowledge the response. If
the master sends a not acknowledge, the slave’s
transmission is complete and the slave must monitor for
the next Start condition. If the master acknowledges,
control of the bus is returned to the slave to transmit
another byte of data. Just as with the previous byte, the
clock is stretched by the slave, data must be loaded into
the SSPBUF and CKP must be set to release the clock
line (SCL).
SSPBUF is written in software From SSP Interrupt
D7
1
D6
2
Cleared in software
Set bit after writing to SSPBUF
(the SSPBUF must be written to
before the CKP bit can be set)
D5
3
D4
4
Transmitting Data
D3
5
© 2009 Microchip Technology Inc.
D2
6
Service Routine
D1
7
D0
8
ACK
9
P

Related parts for PIC16F724-E/MV