ATmega64A Atmel Corporation, ATmega64A Datasheet - Page 182

no-image

ATmega64A

Manufacturer Part Number
ATmega64A
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega64A

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega64A-AN
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64A-ANR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64A-AU
Manufacturer:
ATMEL
Quantity:
4 500
Part Number:
ATmega64A-AU
Manufacturer:
Atmel
Quantity:
900
Part Number:
ATmega64A-AU
Manufacturer:
ATMEL85
Quantity:
900
Part Number:
ATmega64A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64A-AU
Manufacturer:
ATMEL
Quantity:
8 000
Part Number:
ATmega64A-AU
Manufacturer:
AT
Quantity:
20 000
Company:
Part Number:
ATmega64A-AU
Quantity:
1 920
Company:
Part Number:
ATmega64A-AU
Quantity:
1 850
Company:
Part Number:
ATmega64A-AU
Quantity:
1 800
Company:
Part Number:
ATmega64A-AU
Quantity:
267
Company:
Part Number:
ATmega64A-AU
Quantity:
257
Part Number:
ATmega64A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64A-MU
Manufacturer:
Atmel
Quantity:
5 200
20.6.2
20.6.3
8160C–AVR–07/09
Sending Frames with 9 Data Bits
Transmitter Flags and Interrupts
The function simply waits for the transmit buffer to be empty by checking the UDREn flag, before
loading it with new data to be transmitted. If the Data Register Empty Interrupt is utilized, the
interrupt routine writes the data into the buffer.
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in
UCSRnB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers r17:r16.
Note:
The ninth bit can be used for indicating an address frame when using Multi-processor Communi-
cation mode or for other protocol handling as for example synchronization.
The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.
Assembly Code Example
C Code Example
USART_Transmit:
void USART_Transmit( unsigned int data )
{
}
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Copy ninth bit from r17 to TXB8
cbi
sbrc r17,0
sbi
; Put LSB data (r16) into buffer, sends the data
out
ret
/* Wait for empty transmit buffer */
while ( !( UCSRnA & (1<<UDREn)) )
/* Copy ninth bit to TXB8 */
UCSRnB &= ~(1<<TXB8n);
if ( data & 0x0100 )
/* Put data into buffer, sends the data */
UDRn = data;
1. These transmit functions are written to be general functions. They can be optimized if the con-
UCSRnB |= (1<<TXB8n);
tents of the UCSRnB is static. For example, only the TXB8n bit of the UCSRnB Register is
used after initialization.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
UCSRnB,TXB8n
UCSRnB,TXB8n
UDRn,r16
;
(1)
(1)
ATmega64A
182

Related parts for ATmega64A