SAM9G45 Atmel Corporation, SAM9G45 Datasheet - Page 799

no-image

SAM9G45

Manufacturer Part Number
SAM9G45
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9G45

Flash (kbytes)
0 Kbytes
Pin Count
324
Max. Operating Frequency
400 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
160
Ext Interrupts
160
Usb Transceiver
3
Usb Speed
Hi-Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
5
Lin
4
Ssc
2
Ethernet
1
Sd / Emmc
2
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
Yes
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
440
Resistive Touch Screen
Yes
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
NO
External Bus Interface
2
Dram Memory
DDR2/LPDDR, SDRAM/LPSDR
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
0.9 to 1.1
Fpu
No
Mpu / Mmu
No/Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
No
37.4
37.4.1
37.5
37.5.1
6438G–ATARM–19-Apr-11
Product Dependencies
I/O Lines
I/O Lines
Power Management
Access to the USB host operational registers is achieved through the AHB bus slave interface.
The Open HCI host controller and Enhanced HCI host controller initialize master DMA transfers
through the AHB bus master interface as follows:
Memory access errors (abort, misalignment) lead to an “Unrecoverable Error” indicated by the
corresponding flag in the host controller operational registers.
The USB root hub is integrated in the USB host. Several USB downstream ports are available.
The number of downstream ports can be determined by the software driver reading the root
hub’s operational registers. Device connection is automatically detected by the USB host port
logic.
USB physical transceivers are integrated in the product and driven by the root hub’s ports.
Over current protection on ports can be activated by the USB host controller. Atmel’s standard
product does not dedicate pads to external over current protection.
HFSDPs, HFSDMs, HHSDPs and HHSDMs are not controlled by any PIO controllers. The
embedded USB High Speed physical transceivers are controlled by the USB host controller.
HFSDPs, HFSDMs, HHSDPs and HHSDMs are not controlled by any PIO controllers. The
embedded USB High Speed physical transceivers are controlled by the USB host controller.
One transceiver is shared with USB Device (UDP) High Speed. In this case USB Host High
Speed Controller uses only Port A, ie, the signals HFSDPA, HFSDMA, HHSDPA and HHSDMA.
The port B is driven by the UDP High Speed, the output signals are DFSDP, DFSDM, DHSDP
and DHSDM.
The transceiver is automatically selected for Device operation once the UDP High Speed is
enabled.
The USB Host High Speed requires a 48 MHz clock for the embedded High-speed transceivers.
This clock is provided by the UTMI PLL, it is UPLLCK.
In case power consumption is saved by stopping the UTMI PLL, high-speed operations are not
possible. Nevertheless, OHCI Full-speed operations remain possible by selecting PLLACK as
the input clock of OHCI.
The High-speed transceiver returns a 30 MHz clock to the USB Host controller.
The USB Host controller requires 48 MHz and 12 MHz clocks for OHCI full-speed operations.
These clocks must be generated by a PLL with a correct accuracy of ± 0.25% thanks to USBDIV
field.
• Fetches endpoint descriptors and transfer descriptors
• Access to endpoint data from system memory
• Access to the HC communication area
• Write status and retire transfer descriptor
SAM9G45
799

Related parts for SAM9G45