MC812A4CPVE8 Freescale Semiconductor, MC812A4CPVE8 Datasheet - Page 213

IC MCU 16BIT EEPROM 4K 112-LQFP

MC812A4CPVE8

Manufacturer Part Number
MC812A4CPVE8
Description
IC MCU 16BIT EEPROM 4K 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HC12r
Datasheet

Specifications of MC812A4CPVE8

Core Processor
CPU12
Core Size
16-Bit
Speed
8MHz
Connectivity
SCI, SPI
Peripherals
POR, WDT
Number Of I /o
83
Program Memory Size
4KB (4K x 8)
Program Memory Type
EEPROM
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x8b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Processor Series
HC812A
Core
HC12
Data Bus Width
16 bit
Data Ram Size
1 KB
Interface Type
SCI, SPI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
91
Number Of Timers
8
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
8 bit, 8 Channel
Controller Family/series
68HC12
No. Of I/o's
91
Eeprom Memory Size
4KB
Ram Memory Size
1KB
Cpu Speed
8MHz
No. Of Timers
1
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC812A4CPVE8
Manufacturer:
MOTOLOLA
Quantity:
672
Part Number:
MC812A4CPVE8
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC812A4CPVE8
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
MC812A4CPVE80
Quantity:
5 510
Part Number:
MC812A4CPVE80
Manufacturer:
SHARP
Quantity:
5 510
Figure 17-1
The host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling
edge to where the target perceives the beginning of the bit time. Ten target E cycles later, the target
senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin
during host-to-target transmissions to speed up rising edges. Since the target does not drive the BKGD
pin during this period, there is no need to treat the line as an open-drain signal during host-to-target
transmissions.
Figure 17-2
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long
enough for the target to recognize it (at least two target E cycles). The host must release the low drive
before the target MCU drives a brief active-high speed-up pulse seven cycles after the perceived start of
the bit time. The host should sample the bit level about 10 cycles after it started the bit time.
Figure 17-3
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the start of the bit time as perceived by the target MCU. The host initiates the bit time but the
target MC68HC812A4 finishes it. Since the target wants the host to receive a logic 0, it drives the BKGD
pin low for 13 E-clock cycles, then briefly drives it high to speed up the rising edge. The host samples the
bit level about 10 cycles after starting the bit time.
17.3.2 Enabling BDM Firmware Commands
BDM is available in all operating modes, but must be made active before firmware commands can be
executed. BDM is enabled by setting the ENBDM bit in the BDM STATUS register via the single wire
interface (using a hardware command; WRITE_BD_BYTE at $FF01). BDM must then be activated to map
BDM registers and ROM to addresses $FF00 to $FFFF and to put the MCU in active background mode.
After the firmware is enabled, BDM can be activated by the hardware BACKGROUND command, by the
BDM tagging mechanism, or by the CPU BGND instruction. An attempt to activate BDM before firmware
has been enabled causes the MCU to resume normal instruction execution after a brief delay.
Freescale Semiconductor
(TARGET MCU)
SYNCHRONIZATION
PERCEIVED START
TRANSMIT 1
TRANSMIT 0
E CLOCK
UNCERTAINTY
OF BIT TIME
HOST
HOST
shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target M68HC12 MCU.
shows the host receiving a logic 1 from the target MC68HC812A4 MCU. Since the host is
shows the host receiving a logic 0 from the target MC68HC812A4 MCU. Since the host is
Figure 17-1. BDM Host-to-Target Serial Bit Timing
MC68HC812A4 Data Sheet, Rev. 7
10 CYCLES
TARGET SENSES BIT LEVEL
Background Debug Mode (BDM)
EARLIEST START
OF NEXT BIT
213

Related parts for MC812A4CPVE8