DSPIC30F6011-30I/PF Microchip Technology, DSPIC30F6011-30I/PF Datasheet - Page 158

IC DSPIC MCU/DSP 132K 64TQFP

DSPIC30F6011-30I/PF

Manufacturer Part Number
DSPIC30F6011-30I/PF
Description
IC DSPIC MCU/DSP 132K 64TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F6011-30I/PF

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
52
Program Memory Size
132KB (44K x 24)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
6K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Core Frequency
40MHz
Core Supply Voltage
5.5V
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
52
Flash Memory Size
132KB
Supply Voltage Range
2.5V To 5.5V
Package
64TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
52
Interface Type
3-Wire/CAN/I2C/SPI/UART
On-chip Adc
16-chx12-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT64PT4 - SOCKET TRAN ICE 64MQFP/TQFPAC164313 - MODULE SKT FOR PM3 64PFAC30F002 - MODULE SOCKET DSPIC30F 64TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
DSPIC30F601130IPF

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6011-30I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
dsPIC30F6011/6012/6013/6014
20.4
20.4.1
The primary function of the Watchdog Timer (WDT) is
to reset the processor in the event of a software mal-
function. The WDT is a free-running timer which runs
off an on-chip RC oscillator, requiring no external com-
ponent. Therefore, the WDT timer will continue to oper-
ate even if the main processor clock (e.g., the crystal
oscillator) fails.
20.4.2
The Watchdog Timer can be “enabled” or “disabled”
only through a Configuration bit (FWDTEN) in the
Configuration register, FWDT.
Setting FWDTEN = 1 enables the Watchdog Timer. The
enabling is done when programming the device. By
default, after chip erase, FWDTEN bit = 1. Any device
programmer capable of programming dsPIC30F
devices allows programming of this and other
Configuration bits.
If enabled, the WDT will increment until it overflows or
“times out”. A WDT time-out will force a device Reset
(except during Sleep). To prevent a WDT time-out, the
user must clear the Watchdog Timer using a CLRWDT
instruction.
If a WDT times out during Sleep, the device will wake-
up. The WDTO bit in the RCON register will be cleared
to indicate a wake-up resulting from a WDT time-out.
Setting FWDTEN = 0 allows user software to enable/
disable the Watchdog Timer via the SWDTEN
(RCON<5>) control bit.
20.5
The Low-Voltage Detect (LVD) module is used to
detect when the V
threshold value, V
LVDL<3:0> bits (RCON<11:8>) and is thus user pro-
grammable. The internal voltage reference circuitry
requires a nominal amount of time to stabilize, and the
BGST bit (RCON<13>) indicates when the voltage
reference has stabilized.
In some devices, the LVD threshold voltage may be
applied externally on the LVDIN pin.
The LVD module is enabled by setting the LVDEN bit
(RCON<12>).
DS70117F-page 156
Watchdog Timer (WDT)
Low-Voltage Detect
WATCHDOG TIMER OPERATION
ENABLING AND DISABLING
THE WDT
LVD
DD
, which is determined by the
of the device drops below a
20.6
There are two power-saving states that can be entered
through the execution of a special instruction, PWRSAV.
These are Sleep and Idle.
The format of the PWRSAV instruction is as follows:
PWRSAV <parameter>, where ‘parameter’ defines
Idle or Sleep mode.
20.6.1
In Sleep mode, the clock to the CPU and peripherals is
shutdown. If an on-chip oscillator is being used, it is
shutdown.
The Fail-Safe Clock Monitor is not functional during
Sleep since there is no clock to monitor. However,
LPRC clock remains active if WDT is operational during
Sleep.
The brown-out protection circuit and the Low-Voltage
Detect circuit, if enabled, will remain functional during
Sleep.
The processor wakes up from Sleep if at least one of
the following conditions has occurred:
• any interrupt that is individually enabled and
• any Reset (POR, BOR and MCLR)
• WDT time-out
On waking up from Sleep mode, the processor will
restart the same clock that was active prior to entry into
Sleep mode. When clock switching is enabled, bits
COSC<1:0> will determine the oscillator source that
will be used on wake-up. If clock switch is disabled,
then there is only one system clock.
If the clock source is an oscillator, the clock to the
device will be held off until OST times out (indicating a
stable oscillator). If PLL is used, the system clock is
held off until LOCK = 1 (indicating that the PLL is
stable). In either case, T
are applied.
If EC, FRC, LPRC or EXTRC oscillators are used, then
a delay of T
delay possible on wake-up from Sleep.
Moreover, if LP oscillator was active during Sleep and
LP is the oscillator used on wake-up, then the start-up
delay will be equal to T
timer delay are not applied. In order to have -the small-
est possible start-up delay when waking up from Sleep,
one of these faster wake-up options should be selected
before entering Sleep.
meets the required priority level
Note:
Power Saving Modes
POR
SLEEP MODE
If a POR or BOR occurred, the selection of
the oscillator is based on the FOS<1:0>
and FPR<3:0> Configuration bits.
(~ 10 s) is applied. This is the smallest
© 2006 Microchip Technology Inc.
POR
POR
, T
. PWRT delay and OST
LOCK
and T
PWRT
delays

Related parts for DSPIC30F6011-30I/PF