DSPIC30F6011-30I/PF Microchip Technology, DSPIC30F6011-30I/PF Datasheet - Page 51

IC DSPIC MCU/DSP 132K 64TQFP

DSPIC30F6011-30I/PF

Manufacturer Part Number
DSPIC30F6011-30I/PF
Description
IC DSPIC MCU/DSP 132K 64TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F6011-30I/PF

Core Processor
dsPIC
Core Size
16-Bit
Speed
30 MIPs
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
52
Program Memory Size
132KB (44K x 24)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
6K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Core Frequency
40MHz
Core Supply Voltage
5.5V
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
52
Flash Memory Size
132KB
Supply Voltage Range
2.5V To 5.5V
Package
64TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
30 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
52
Interface Type
3-Wire/CAN/I2C/SPI/UART
On-chip Adc
16-chx12-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT64PT4 - SOCKET TRAN ICE 64MQFP/TQFPAC164313 - MODULE SKT FOR PM3 64PFAC30F002 - MODULE SOCKET DSPIC30F 64TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
DSPIC30F601130IPF

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6011-30I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
FIGURE 5-2:
The RETFIE (Return from Interrupt) instruction will
unstack the program counter and STATUS registers to
return the processor to its state prior to the interrupt
sequence.
5.5
In program memory, the Interrupt Vector Table (IVT) is
followed by the Alternate Interrupt Vector Table (AIVT),
as shown in Table 5-1. Access to the alternate vector
table is provided by the ALTIVT bit in the INTCON2 reg-
ister. If the ALTIVT bit is set, all interrupt and exception
processes will use the alternate vectors instead of the
default vectors. The alternate vectors are organized in
the same manner as the default vectors. The AIVT sup-
ports emulation and debugging efforts by providing a
means to switch between an application and a support
environment without requiring the interrupt vectors to
be reprogrammed. This feature also enables switching
between applications for evaluation of different
software algorithms at run time.
If the AIVT is not required, the program memory allo-
cated to the AIVT may be used for other purposes.
AIVT is not a protected section and may be freely
programmed by the user.
© 2006 Microchip Technology Inc.
0x0000
Note 1: The user can always lower the priority
2: The IPL3 bit (CORCON<3>) is always
Alternate Vector Table
15
SRL IPL3 PC<22:16>
level by writing a new value into SR. The
Interrupt Service Routine must clear the
interrupt flag bits in the IFSx register
before lowering the processor interrupt
priority, in order to avoid recursive
interrupts.
clear when interrupts are being pro-
cessed. It is set only during execution of
traps.
<Free Word>
PC<15:0>
INTERRUPT STACK
FRAME
0
POP : [--W15]
PUSH: [W15++]
W15 (before CALL)
W15 (after CALL)
dsPIC30F6011/6012/6013/6014
5.6
A context saving option is available using shadow reg-
isters. Shadow registers are provided for the DC, N,
OV, Z and C bits in SR, and the registers W0 through
W3. The shadows are only one level deep. The shadow
registers are accessible using the PUSH.S and POP.S
instructions only.
When the processor vectors to an interrupt, the
PUSH.S instruction can be used to store the current
value of the aforementioned registers into their
respective shadow registers.
If an ISR of a certain priority uses the PUSH.S and
POP.S instructions for fast context saving, then a
higher priority ISR should not include the same instruc-
tions. Users must save the key registers in software
during a lower priority interrupt if the higher priority ISR
uses fast context saving.
5.7
The interrupt controller supports up to five external
interrupt request signals, INT0-INT4. These inputs are
edge sensitive; they require a low-to-high or a high-to-
low transition to generate an interrupt request. The
INTCON2 register has five bits, INT0EP-INT4EP, that
select the polarity of the edge detection circuitry.
5.8
The interrupt controller may be used to wake-up the
processor from either Sleep or Idle modes, if Sleep or
Idle mode is active when the interrupt is generated.
If an enabled interrupt request of sufficient priority is
received by the interrupt controller, then the standard
interrupt request is presented to the processor. At the
same time, the processor will wake-up from Sleep or
Idle and begin execution of the Interrupt Service
Routine (ISR) needed to process the interrupt request.
Fast Context Saving
External Interrupt Requests
Wake-up from Sleep and Idle
DS70117F-page 49

Related parts for DSPIC30F6011-30I/PF