DS21348 Dallas Semiconducotr, DS21348 Datasheet - Page 34

no-image

DS21348

Manufacturer Part Number
DS21348
Description
3.3V E1/T1/J1 Line Interface
Manufacturer
Dallas Semiconducotr
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DS21348G
Manufacturer:
DS
Quantity:
837
Part Number:
DS21348G
Manufacturer:
Maxim Integrated
Quantity:
10 000
Part Number:
DS21348G
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
DS21348G+
Manufacturer:
Maxim Integrated
Quantity:
10 000
Part Number:
DS21348G+
Manufacturer:
MAXIM/美信
Quantity:
20 000
Part Number:
DS21348GN
Manufacturer:
Maxim Integrated
Quantity:
10 000
Company:
Part Number:
DS21348GN
Quantity:
80
Part Number:
DS21348GN+
Manufacturer:
Maxim Integrated
Quantity:
10 000
Part Number:
DS21348GN-C01
Manufacturer:
Maxim Integrated
Quantity:
10 000
Part Number:
DS21348T
Manufacturer:
DALLAS
Quantity:
188
Part Number:
DS21348T
Manufacturer:
DALLAS
Quantity:
13
Part Number:
DS21348T
Manufacturer:
DALLAS
Quantity:
20 000
Part Number:
DS21348T
Quantity:
63
Part Number:
DS21348T+
Manufacturer:
MAXIM
Quantity:
612
Part Number:
DS21348T+
Manufacturer:
MAXIM/美信
Quantity:
20 000
Part Number:
DS21348TN
Manufacturer:
DALLAS
Quantity:
5 530
7. STATUS REGISTERS
There are three registers that contain information on the current real time status of the device, Status
Register (SR) and Receive Information Registers 1 and 2 (RIR1/RIR2). When a particular event has
occurred (or is occurring), the appropriate bit in one of these three registers will be set to a one. Some of
the bits in SR, RIR1, and RIR2 are latched bits and some are real time bits. The register descriptions
below list which status bits are latched and which are real time bits. For latched status bits, when an event
or an alarm occurs the bit is set to a one and will remain set until the user reads that bit. The bit will be
cleared when it is read and it will not be set again until the event has occurred again. Two of the latched
status bits (RUA1 and RCL) will remain set after reading if the alarm is still present.
The user will always precede a read of any of the three status registers with a write. The byte written to
the register will inform the DS21348 which bits the user wishes to read and have cleared. The user will
write a byte to one of these registers with a one in the bit positions to be read and a zero in the other bit
positions. When a one is written to a bit location, that location will be updated with the latest information.
When a zero is written to a bit position, that bit position will not be updated and the previous value will
be held. A write to the status and information registers will be immediately followed by a read of the
same register. The read result should be logically AND’ed with the mask byte that was just written and
this value should be written back into the same register to insure that bit does indeed clear. This second
write step is necessary because the alarms and events in the status registers occur asynchronously with
respect to their access via the parallel port. This write-read-write scheme allows an external
microcontroller or microprocessor to individually poll certain bits without disturbing the other bits in the
register. This operation is key in controlling the DS21348 with higher-order software languages.
The bits in the SR register have the unique ability to initiate a hardware interrupt via the INT* output pin.
Each of the alarms and events in the SR can be either masked or unmasked from the interrupt pin via the
Interrupt Mask Register (IMR). The interrupts caused by the RCL, RUA1, and LOTC bits in SR act
differently than the interrupts caused by the other status bits in SR. The RCL, RUA1 and LOTC bits will
force the INT* pin low whenever they change state (i.e., go active or inactive). The INT* pin will be
allowed to return high (if no other interrupts are present) when the user reads the alarm bit that caused the
interrupt to occur even if the alarm is still present. The other status bits in SR can force the INT* pin low
when they are set. The INT* pin will be allowed to return high (if no other interrupts are present) when
the user reads the event bit that caused the interrupt to occur.
SYMBOL
ECRS2
ECRS1
ECRS0
POSITION
CCR6.2
CCR6.1
CCR6.0
DESCRIPTION
receive recovered clock and data to bypass the jitter attenuation
while still allowing the BPCLK output to use the jitter
attenuator. See for details.
0 = disabled
1 = enabled
Error Count Register Select 2. See Section 8.4 for details.
Error Count Register Select 1. See Section 8.4 for details.
Error Count Register Select 0. See Section 8.4 for details.
34 of 73

Related parts for DS21348