MC9S08AC16CFJE Freescale Semiconductor, MC9S08AC16CFJE Datasheet - Page 142

IC MCU 8BIT 16K FLASH 32-LQFP

MC9S08AC16CFJE

Manufacturer Part Number
MC9S08AC16CFJE
Description
IC MCU 8BIT 16K FLASH 32-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheets

Specifications of MC9S08AC16CFJE

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-LQFP
Processor Series
S08AC
Core
HCS08
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
SCI/SPI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
22
Number Of Timers
8
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWS08
Development Tools By Supplier
DEMO9S08AC60E, DEMOACEX, DEMOACKIT, DCF51AC256, DC9S08AC128, DC9S08AC16, DC9S08AC60, DEMO51AC256KIT
Minimum Operating Temperature
- 40 C
On-chip Adc
6-ch x 10-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08AC16CFJE
Manufacturer:
FREESCALE
Quantity:
5 375
Part Number:
MC9S08AC16CFJE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08AC16CFJE
Manufacturer:
FREESCALE
Quantity:
5 375
Part Number:
MC9S08AC16CFJER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Internal Clock Generator (S08ICGV4)
8.4.9
The reference clock and the DCO clock are monitored under different conditions (see
the reference frequency is being monitored, ERCS = 1 indicates that the reference clock meets minimum
frequency requirements. When the reference and/or DCO clock(s) are being monitored, if either one falls
below a certain frequency, f
LOCS will remain set until it is acknowledged or until the MCU is reset. LOCS is cleared by reading
ICGS1 then writing 1 to ICGIF (LOCRE = 0), or by a loss-of-clock induced reset (LOCRE = 1), or by any
MCU reset.
If the ICG is in FEE, a loss of reference clock causes the ICG to enter SCM, and a loss of DCO clock causes
the ICG to enter FBE mode. If the ICG is in FBE mode, a loss of reference clock will cause the ICG to
enter SCM. In each case, the CLKST and CLKS bits will be automatically changed to reflect the new state.
If the ICG is in FEE mode when a loss of clock occurs and the ERCS is still set to 1, then the CLKST bits
are set to 10 and the ICG reverts to FBE mode.
A loss of clock will also cause a loss of lock when in FEE or FEI modes. Because the method of clearing
the LOCS and LOLS bits is the same, this would only be an issue in the unlikely case that LOLRE = 1 and
LOCRE = 0. In this case, the interrupt would be overridden by the reset for the loss of lock.
142
1
2
If ENABLE is high (waiting for external crystal start-up after exiting stop).
DCO clock will not be monitored until DCOS = 1 upon entering SCM from off or FLL bypassed external mode.
(CLKST = 00)
(CLKST = 01)
(CLKST = 10)
(CLKST = 11)
Mode
FLL Loss-of-Clock Detection
SCM
FBE
FEE
FEI
Off
0X or 11
CLKS
0X
0X
10
10
10
10
11
11
10
10
11
LOR
Table 8-8. Clock Monitoring (When LOCD = 0)
and f
REFST
MC9S08AC16 Series Data Sheet, Rev. 8
X
X
X
X
X
X
0
1
0
1
0
1
LOD
, respectively, the LOCS status bit will be set to indicate the error.
Forced High
Forced High
Forced Low
Forced Low
Forced Low
Forced Low
Real-Time
Real-Time
Real-Time
Real-Time
Real-Time
Real-Time
ERCS
1
External Reference
Monitored?
Clock
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
(1)
Freescale Semiconductor
Table
Monitored?
DCO Clock
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
(2)
(2)
(2)
8-8). Provided
2

Related parts for MC9S08AC16CFJE