MC9S08AC16CFJE Freescale Semiconductor, MC9S08AC16CFJE Datasheet - Page 236

IC MCU 8BIT 16K FLASH 32-LQFP

MC9S08AC16CFJE

Manufacturer Part Number
MC9S08AC16CFJE
Description
IC MCU 8BIT 16K FLASH 32-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheets

Specifications of MC9S08AC16CFJE

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-LQFP
Processor Series
S08AC
Core
HCS08
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
SCI/SPI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
22
Number Of Timers
8
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWS08
Development Tools By Supplier
DEMO9S08AC60E, DEMOACEX, DEMOACKIT, DCF51AC256, DC9S08AC128, DC9S08AC16, DC9S08AC60, DEMO51AC256KIT
Minimum Operating Temperature
- 40 C
On-chip Adc
6-ch x 10-bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08AC16CFJE
Manufacturer:
FREESCALE
Quantity:
5 375
Part Number:
MC9S08AC16CFJE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08AC16CFJE
Manufacturer:
FREESCALE
Quantity:
5 375
Part Number:
MC9S08AC16CFJER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Inter-Integrated Circuit (S08IICV2)
13.4.1.2
The first byte of data transferred immediately after the start signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.
Only the slave with a calling address that matches the one transmitted by the master responds by sending
back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see
No two slaves in the system may have the same address. If the IIC module is the master, it must not
transmit an address equal to its own slave address. The IIC cannot be master and slave at the same time.
However, if arbitration is lost during an address cycle, the IIC reverts to slave mode and operates correctly
even if it is being addressed by another master.
13.4.1.3
Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master.
All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device
Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high as shown in
transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the
receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one
complete data transfer needs nine clock pulses.
If the slave receiver does not acknowledge the master in the ninth bit time, the SDA line must be left high
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.
If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave
interprets this as an end of data transfer and releases the SDA line.
In either case, the data transfer is aborted and the master does one of two things:
13.4.1.4
The master can terminate the communication by generating a stop signal to free the bus. However, the
master may generate a start signal followed by a calling command without generating a stop signal first.
This is called repeated start. A stop signal is defined as a low-to-high transition of SDA while SCL at
logical 1 (see
The master can generate a stop even if the slave has generated an acknowledge at which point the slave
must release the bus.
236
1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.
Relinquishes the bus by generating a stop signal.
Commences a new calling by generating a repeated start signal.
Slave Address Transmission
Data Transfer
Stop Signal
Figure
13-9).
Figure
13-9. There is one clock pulse on SCL for each data bit, the msb being
MC9S08AC16 Series Data Sheet, Rev. 8
Freescale Semiconductor
Figure
13-9).

Related parts for MC9S08AC16CFJE