PIC16F628A-I/ML Microchip Technology, PIC16F628A-I/ML Datasheet - Page 79

IC MCU FLASH 2KX14 EEPROM 28QFN

PIC16F628A-I/ML

Manufacturer Part Number
PIC16F628A-I/ML
Description
IC MCU FLASH 2KX14 EEPROM 28QFN
Manufacturer
Microchip Technology
Series
PIC® 16Fr
Datasheets

Specifications of PIC16F628A-I/ML

Core Size
8-Bit
Program Memory Size
3.5KB (2K x 14)
Core Processor
PIC
Speed
20MHz
Connectivity
UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
16
Program Memory Type
FLASH
Eeprom Size
128 x 8
Ram Size
224 x 8
Voltage - Supply (vcc/vdd)
3 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-VQFN Exposed Pad, 28-HVQFN, 28-SQFN, 28-DHVQFN
Controller Family/series
PIC16F
No. Of I/o's
16
Eeprom Memory Size
128Byte
Ram Memory Size
224Byte
Cpu Speed
20MHz
No. Of Timers
3
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
224 B
Interface Type
SCI, USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
16
Number Of Timers
1 x 16 bit
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DM163014, DM164120-4
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC164324 - MODULE SKT FOR MPLAB 8DFN/16QFNXLT28QFN3 - SOCKET TRAN ICE 18DIP/28QFNI3DBF648 - BOARD DAUGHTER ICEPIC3AC164033 - ADAPTER 28QFN TO 18DIPAC162053 - HEADER INTERFACE ICD,ICD2 18DIPDV007003 - PROGRAMMER UNIVERSAL PROMATE II
Data Converters
-
Lead Free Status / Rohs Status
 Details
12.2
In this mode, the USART uses standard non-return-to-
zero (NRZ) format (one Start bit, eight or nine data bits
and one Stop bit). The most common data format is
8-bit. A dedicated 8-bit baud rate generator is used to
derive baud rate frequencies from the oscillator. The
USART transmits and receives the LSb first. The
USART’s transmitter and receiver are functionally
independent, but use the same data format and baud
rate. The baud rate generator produces a clock either
x16 or x64 of the bit shift rate, depending on bit BRGH
(TXSTA<2>). Parity is not supported by the hardware,
but can be implemented in software (and stored as the
ninth data bit). Asynchronous mode is stopped during
Sleep.
Asynchronous mode is selected by clearing bit SYNC
(TXSTA<4>).
The USART Asynchronous module consists of the
following important elements:
• Baud Rate Generator
• Sampling Circuit
• Asynchronous Transmitter
• Asynchronous Receiver
12.2.1
The USART transmitter block diagram is shown in
Figure 12-1. The heart of the transmitter is the Transmit
(serial) Shift Register (TSR). The shift register obtains
its data from the read/write transmit buffer, TXREG. The
TXREG register is loaded with data in software. The
TSR register is not loaded until the Stop bit has been
transmitted from the previous load. As soon as the Stop
bit is transmitted, the TSR is loaded with new data from
the TXREG register (if available). Once the TXREG
register transfers the data to the TSR register (occurs
in one T
TXIF (PIR1<4>) is set. This interrupt can be enabled/
disabled
( PIE1<4>). Flag bit TXIF will be set regardless of the
state of enable bit TXIE and cannot be cleared in
software. It will reset only when new data is loaded into
the TXREG register. While flag bit TXIF indicated the
status of the TXREG register, another bit TRMT
(TXSTA<1>) shows the status of the TSR register.
Status bit TRMT is a read-only bit which is set when the
TSR register is empty. No interrupt logic is tied to this
bit, so the user has to poll this bit in order to determine
if the TSR register is empty.
© 2009 Microchip Technology Inc.
Note 1: The TSR register is not mapped in data
CY
2: Flag bit TXIF is set when enable bit TXEN
USART Asynchronous Mode
), the TXREG register is empty and flag bit
by
USART ASYNCHRONOUS
TRANSMITTER
memory so it is not available to the user.
is set.
setting/clearing
enable
bit
TXIE
PIC16F627A/628A/648A
Transmission is enabled by setting enable bit TXEN
(TXSTA<5>). The actual transmission will not occur
until the TXREG register has been loaded with data
and the Baud Rate Generator (BRG) has produced a
shift clock (Figure 12-1). The transmission can also be
started by first loading the TXREG register and then
setting enable bit TXEN. Normally when transmission
is first started, the TSR register is empty, so a transfer
to the TXREG register will result in an immediate
transfer to TSR resulting in an empty TXREG. A back-
to-back transfer is thus possible (Figure 12-3). Clearing
enable bit TXEN during a transmission will cause the
transmission to be aborted and will reset the
transmitter. As a result the RB2/TX/CK pin will revert to
high-impedance.
In order to select 9-bit transmission, transmit bit TX9
(TXSTA<6>) should be set and the ninth bit should be
written to TX9D (TXSTA<0>). The ninth bit must be
written before writing the 8-bit data to the TXREG
register. This is because a data write to the TXREG
register can result in an immediate transfer of the data
to the TSR register (if the TSR is empty). In such a
case, an incorrect ninth data bit may be loaded in the
TSR register.
DS40044G-page 79

Related parts for PIC16F628A-I/ML