MC56F8014VFAE Freescale Semiconductor, MC56F8014VFAE Datasheet - Page 9

IC DIGITAL SIGNAL CTRLR 32-LQFP

MC56F8014VFAE

Manufacturer Part Number
MC56F8014VFAE
Description
IC DIGITAL SIGNAL CTRLR 32-LQFP
Manufacturer
Freescale Semiconductor
Series
56F8xxxr
Datasheet

Specifications of MC56F8014VFAE

Core Processor
56800
Core Size
16-Bit
Speed
32MHz
Connectivity
I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
26
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Ram Size
2K x 16
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 105°C
Package / Case
32-LQFP
Cpu Family
56F8xxx
Device Core Size
16b
Frequency (max)
32MHz
Interface Type
I2C/SCI/SPI
Total Internal Ram Size
4KB
# I/os (max)
26
Number Of Timers - General Purpose
1
Operating Supply Voltage (typ)
3.3V
Operating Supply Voltage (max)
3.6V
Operating Supply Voltage (min)
3V
On-chip Adc
2(4-chx12-bit)
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 105C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
32
Package Type
LQFP
Product
DSCs
Data Bus Width
16 bit
Processor Series
MC56F80xx
Core
56800E
Numeric And Arithmetic Format
Fixed-Point
Device Million Instructions Per Second
32 MIPs
Maximum Clock Frequency
32 MHz
Number Of Programmable I/os
26
Data Ram Size
4 KB
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Data Rom Size
16 KB
Development Tools By Supplier
MC56F8037EVM, DEMO56F8014-EE, DEMO56F8013-EE
Minimum Operating Temperature
- 40 C
For Use With
DEMO56F8014-E - BOARD DEMO MC56F8014 W/UNIV PSDEMO56F8014 - BOARD DEMO MC56F8014 W/US PSAPMOTOR56F8000E - KIT DEMO MOTOR CTRL SYSTEMDEMO56F8014-EE - BOARD DEMO FOR 56F8014
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC56F8014VFAE
Manufacturer:
FREESCALE
Quantity:
3 389
Part Number:
MC56F8014VFAE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC56F8014VFAE
Manufacturer:
FREESCALE
Quantity:
3 389
Part Number:
MC56F8014VFAE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC56F8014VFAE
0
Company:
Part Number:
MC56F8014VFAE
Quantity:
15 000
Company:
Part Number:
MC56F8014VFAE
Quantity:
36 000
create a complete, scalable tools solution for easy, fast, and efficient development.
1.4 Architecture Block Diagram
The 56F8014’s architecture is shown in
how the 56800E system buses communicate with internal memories and the IPBus Bridge, as well as
showing the internal connections between each unit of the 56800E core.
and control blocks connected to the IPBus Bridge.
The figures do not show the on-board regulator and power and ground signals. They also do not show the
multiplexing between peripherals or the dedicated GPIOs. Please see
Descriptions
1.5 Synchronize ADC with PWM
ADC conversion can be synchronized with the PWM module via Quad Timer channel 2 and 3 if needed.
Internally, the PWM synch signal — which is generated at every PWM reload —can be connected to the
timer channel 3 input, and the timer channel 2 and channel 3 outputs are connected to the ADC sync inputs.
Timer channel 3 output is connected to SYNC0 and timer channel 2 is connected to SYNC1. The setting
is controlled by the TC3_INP bit in the SIM Control Register; see
SYNC0 is the master ADC sync input, used to trigger both ADCA and ADCB in sequence and parallel
mode. SYNC1 is used to trigger ADCB in parallel independent mode, while SYNC0 is used to trigger
ADCA. See MC56F8000RM, the 56F801X Peripheral Reference Manual, for additional information.
1.6 Multiple Frequency PWM Output
When both PWM channels of a complementary pair in software control mode and software control bits
are set to 1, each complementary PWM signal pair — PWM 0 and 1; PWM 2 and 3; and PWM 4 and 5 —
can select a PWM source from one of the following sources. This will enable each PWM pair and PWM2
to output PWM signals at different frequencies.
Freescale Semiconductor
External GPIO input:
— GPIOB2 input can be used to drive PWM 0 and 1
— GPIOB3 input can be used to drive PWM 2
— GPIOB4 input can be used to drive PWM 4 and 5
Quad Timer output:
— Timer0 output can be used to drive PWM 0 and 1
— Timer2 output can be used to drive PWM 2
— Timer3 output can be used to drive PWM 4 and 5
ADC conversion result:
— Signal of over/under limit of ADC sample 0 can be used to drive PWM 0 and 1
— Signal of over/under limit of ADC sample 1 can be used to drive PWM 2
to see which signals are multiplexed with those of other peripherals.
56F8014 Technical Data, Rev. 11
Figure
1-1,
Figure 1-3
Figure
details how the device’s I/O pins are muxed.
1-2, and
Section
Figure
Figure 1-2
6.3.1.
Part 2 Signal/Connection
1-3.
Figure 1-1
shows the peripherals
Architecture Block Diagram
illustrates
9

Related parts for MC56F8014VFAE