MC9S12DT256MPVE Freescale Semiconductor, MC9S12DT256MPVE Datasheet - Page 154

IC MCU 256K FLASH 25MHZ 112-LQFP

MC9S12DT256MPVE

Manufacturer Part Number
MC9S12DT256MPVE
Description
IC MCU 256K FLASH 25MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12DT256MPVE

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
PWM, WDT
Number Of I /o
91
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
12K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 5.25 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
112-LQFP
Processor Series
S12D
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
12 KB
Interface Type
CAN/I2C/SCI/SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
91
Number Of Timers
1
Operating Supply Voltage
5 V to 2.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
M68KIT912DP256
Minimum Operating Temperature
- 40 C
On-chip Adc
2 (8-ch x 10-bit)
No. Of I/o's
91
Eeprom Memory Size
4KB
Ram Memory Size
12KB
Cpu Speed
25MHz
No. Of Timers
1
No. Of Pwm Channels
8
Digital Ic Case Style
LQFP
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12DT256MPVE
Manufacturer:
FREESCALE
Quantity:
2 564
Part Number:
MC9S12DT256MPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12DT256MPVE
Manufacturer:
FREESCALE
Quantity:
2 564
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
In either level or edge triggered modes, the first conversion begins when the trigger is received. In both
cases, the maximum latency time is one bus clock cycle plus any skew or delay introduced by the trigger
circuitry.
After ETRIGE is enabled, conversions cannot be started by a write to ATDCTL5, but rather must be
triggered externally.
If the level mode is active and the external trigger both de-asserts and re-asserts itself during a conversion
sequence, this does not constitute an overrun. Therefore, the flag is not set. If the trigger remains asserted
in level mode while a sequence is completing, another sequence will be triggered immediately.
4.4.2.2
The input channel pins can be multiplexed between analog and digital data. As analog inputs, they are
multiplexed and sampled to supply signals to the A/D converter. As digital inputs, they supply external
input data that can be accessed through the digital port registers (PORTAD0 & PORTAD1) (input-only).
The analog/digital multiplex operation is performed in the input pads. The input pad is always connected
to the analog inputs of the ATD10B16C. The input pad signal is buffered to the digital port registers. This
buffer can be turned on or off with the ATDDIEN0 & ATDDIEN1 register. This is important so that the
buffer does not draw excess current when analog potentials are presented at its input.
4.4.3
The ATD10B16C can be configured for lower MCU power consumption in three different ways:
154
Stop Mode
Stop Mode: This halts A/D conversion. Exit from Stop mode will resume A/D conversion, But due
to the recovery time the result of this conversion should be ignored.
Entering stop mode causes all clocks to halt and thus the system is placed in a minimum power
standby mode. This halts any conversion sequence in progress. During recovery from stop mode,
there must be a minimum delay for the stop recovery time t
conversion sequence.
Wait Mode
Wait Mode with AWAI = 1: This halts A/D conversion. Exit from Wait mode will resume A/D
conversion, but due to the recovery time the result of this conversion should be ignored.
Entering wait mode, the ATD conversion either continues or halts for low power depending on the
logical value of the AWAIT bit.
Freeze Mode
Writing ADPU = 0 (Note that all ATD registers remain accessible.): This aborts any A/D
conversion in progress.
In freeze mode, the ATD10B16C will behave according to the logical values of the FRZ1 and FRZ0
bits. This is useful for debugging and emulation.
Operation in Low Power Modes
General-Purpose Digital Input Port Operation
The reset value for the ADPU bit is zero. Therefore, when this module is
reset, it is reset into the power down state.
MC9S12XDP512 Data Sheet, Rev. 2.21
NOTE
SR
before initiating a new ATD
Freescale Semiconductor

Related parts for MC9S12DT256MPVE