ADSP-BF533 AD [Analog Devices], ADSP-BF533 Datasheet - Page 3

no-image

ADSP-BF533

Manufacturer Part Number
ADSP-BF533
Description
Blackfin Embedded Processor
Manufacturer
AD [Analog Devices]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADSP-BF533
Manufacturer:
AD
Quantity:
5 510
Part Number:
ADSP-BF533
Manufacturer:
OMRON
Quantity:
5 510
Part Number:
ADSP-BF533-0.5
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADSP-BF533-SBBCZ-5V
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADSP-BF533-SBSTZ400
Manufacturer:
AD
Quantity:
1 000
Part Number:
ADSP-BF533-SBSTZ400
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADSP-BF533SBB500
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADSP-BF533SBBC-5V
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADSP-BF533SBBC400
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADSP-BF533SBBC500
Manufacturer:
ADI
Quantity:
210
Part Number:
ADSP-BF533SBBC500
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADSP-BF533SBBC600
Manufacturer:
ADI
Quantity:
192
Part Number:
ADSP-BF533SBBCZ-5V
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADSP-BF533SBBCZ400
Manufacturer:
ADI
Quantity:
756
Part Number:
ADSP-BF533SBBCZ400
Manufacturer:
ADI/亚德诺
Quantity:
20 000
GENERAL DESCRIPTION
The ADSP-BF531/2/3 processors are members of the Blackfin
family of products, incorporating the Analog Devices/Intel
Micro Signal Architecture (MSA). Blackfin processors combine
a dual-MAC state-of-the-art signal processing engine, the
advantages of a clean, orthogonal RISC-like microprocessor
instruction set, and single-instruction, multiple-data (SIMD)
multimedia capabilities into a single instruction-set
architecture.
The ADSP-BF531/2/3 processors are completely code and pin
compatible, differing only with respect to their performance and
on-chip memory. Specific performance and memory configura-
tions are shown in
Table 1. Processor Comparison
By integrating a rich set of industry-leading system peripherals
and memory, Blackfin processors are the platform of choice for
next-generation applications that require RISC-like program-
mability, multimedia support, and leading-edge signal
processing in one integrated package.
PORTABLE LOW POWER ARCHITECTURE
Blackfin processors provide world-class power management
and performance. Blackfin processors are designed in a low
power and low voltage design methodology and feature
Dynamic Power Management, the ability to vary both the volt-
age and frequency of operation to significantly lower overall
power consumption. Varying the voltage and frequency can
result in a substantial reduction in power consumption, com-
pared with just varying the frequency of operation. This
translates into longer battery life for portable appliances.
SYSTEM INTEGRATION
The ADSP-BF531/2/3 processors are highly integrated system-
on-a-chip solutions for the next generation of digital communi-
cation and consumer multimedia applications. By combining
industry-standard interfaces with a high performance signal
processing core, users can develop cost-effective solutions
quickly without the need for costly external components. The
system peripherals include a UART port, an SPI port, two serial
ports (SPORTs), four general-purpose timers (three with PWM
capability), a real-time clock, a watchdog timer, and a Parallel
Peripheral Interface.
Maximum
Performance
Instruction
SRAM/Cache
Instruction
SRAM
Data
SRAM/Cache
Data SRAM
Scratchpad
ADSP-BF531 ADSP-BF532 ADSP-BF533
400 MHz
800 MMACs
16K bytes
16K bytes
16K bytes
4K bytes
Table
1.
400 MHz
800 MMACs
16K bytes
32K bytes
32K bytes
4K bytes
32K bytes
600 MHz
1200 MMACs
16K bytes
64K bytes
32K bytes
4K bytes
Rev. 0 | Page 3 of 56 | March 2004
ADSP-BF531/ADSP-BF532/ADSP-BF533
ADSP-BF531/2/3 PROCESSOR PERIPHERALS
The ADSP-BF531/2/3 processor contains a rich set of peripher-
als connected to the core via several high bandwidth buses,
providing flexibility in system configuration as well as excellent
overall system performance (see the functional block diagram in
Figure 1 on Page
functions such as UART, Timers with PWM (Pulse-Width
Modulation) and pulse measurement capability, general-pur-
pose flag I/O pins, a Real-Time Clock, and a Watchdog Timer.
This set of functions satisfies a wide variety of typical system
support needs and is augmented by the system expansion capa-
bilities of the part. In addition to these general-purpose
peripherals, the ADSP-BF531/2/3 processor contains high speed
serial and parallel ports for interfacing to a variety of audio,
video, and modem codec functions; an interrupt controller for
flexible management of interrupts from the on-chip peripherals
or external sources; and power management control functions
to tailor the performance and power characteristics of the pro-
cessor and system to many application scenarios.
All of the peripherals, except for general-purpose I/O, Real-
Time Clock, and timers, are supported by a flexible DMA struc-
ture. There is also a separate memory DMA channel dedicated
to data transfers between the processor's various memory
spaces, including external SDRAM and asynchronous memory.
Multiple on-chip buses running at up to 133 MHz provide
enough bandwidth to keep the processor core running along
with activity on all of the on-chip and external peripherals.
The ADSP-BF531/2/3 processor includes an on-chip voltage
regulator in support of the ADSP-BF531/2/3 processor
Dynamic Power Management capability. The voltage regulator
provides a range of core voltage levels from a single 2.25 V to
3.6 V input. The voltage regulator can be bypassed at the user's
discretion.
BLACKFIN PROCESSOR CORE
As shown in
contains two 16-bit multipliers, two 40-bit accumulators, two
40-bit ALUs, four video ALUs, and a 40-bit shifter. The compu-
tation units process 8-bit, 16-bit, or 32-bit data from the
register file.
The compute register file contains eight 32-bit registers. When
performing compute operations on 16-bit operand data, the
register file operates as 16 independent 16-bit registers. All
operands for compute operations come from the multiported
register file and instruction constant fields.
Each MAC can perform a 16-bit by 16-bit multiply in each
cycle, accumulating the results into the 40-bit accumulators.
Signed and unsigned formats, rounding, and saturation are
supported.
The ALUs perform a traditional set of arithmetic and logical
operations on 16-bit or 32-bit data. In addition, many special
instructions are included to accelerate various signal processing
tasks. These include bit operations such as field extract and pop-
ulation count, modulo 2
Figure 2 on Page
1). The general-purpose peripherals include
32
multiply, divide primitives,
5, the Blackfin processor core

Related parts for ADSP-BF533