IC AVR MCU 4K 10MHZ 1.8V 32-QFN

ATMEGA48V-10MU

Manufacturer Part NumberATMEGA48V-10MU
DescriptionIC AVR MCU 4K 10MHZ 1.8V 32-QFN
ManufacturerAtmel
SeriesAVR® ATmega
ATMEGA48V-10MU datasheets
 

Specifications of ATMEGA48V-10MU

Core ProcessorAVRCore Size8-Bit
Speed10MHzConnectivityI²C, SPI, UART/USART
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber Of I /o23
Program Memory Size4KB (2K x 16)Program Memory TypeFLASH
Eeprom Size256 x 8Ram Size512 x 8
Voltage - Supply (vcc/vdd)1.8 V ~ 5.5 VData ConvertersA/D 8x10b
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C
Package / Case32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFNPackage32MLF EP
Device CoreAVRFamily NameATmega
Maximum Speed10 MHzOperating Supply Voltage2.5|3.3|5 V
Data Bus Width8 BitNumber Of Programmable I/os23
Interface TypeSPI/TWI/USARTOn-chip Adc8-chx10-bit
Number Of Timers3Processor SeriesATMEGA48x
CoreAVR8Data Ram Size512 B
Maximum Clock Frequency10 MHzMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development ToolsEWAVR, EWAVR-BL
Minimum Operating Temperature- 40 CController Family/seriesAVR MEGA
No. Of I/o's23Eeprom Memory Size256Byte
Ram Memory Size512ByteCpu Speed10MHz
No. Of Timers3Rohs CompliantYes
For Use WithATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMLead Free Status / RoHS StatusLead free / RoHS Compliant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
Page 231
232
Page 232
233
Page 233
234
Page 234
235
Page 235
236
Page 236
237
Page 237
238
Page 238
239
Page 239
240
Page 240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
Page 236/378

Download datasheet (8Mb)Embed
PrevNext
• Bit 7 – TWINT: TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.
• Bit 6 – TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:
1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode.
By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial
Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.
• Bit 5 – TWSTA: TWI START Condition Bit
The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire
Serial Bus. The TWI hardware checks if the bus is available, and generates a START condition
on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition is
detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.
• Bit 4 – TWSTO: TWI STOP Condition Bit
Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.
• Bit 3 – TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.
• Bit 2 – TWEN: TWI Enable Bit
The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.
• Bit 1 – Res: Reserved Bit
This bit is a reserved bit and will always read as zero
ATmega48/88/168
236
2545S–AVR–07/10