ATMEGA48V-10MU Atmel, ATMEGA48V-10MU Datasheet - Page 263

IC AVR MCU 4K 10MHZ 1.8V 32-QFN

ATMEGA48V-10MU

Manufacturer Part Number
ATMEGA48V-10MU
Description
IC AVR MCU 4K 10MHZ 1.8V 32-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA48V-10MU

Core Processor
AVR
Core Size
8-Bit
Speed
10MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
4KB (2K x 16)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Package
32MLF EP
Device Core
AVR
Family Name
ATmega
Maximum Speed
10 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
23
Interface Type
SPI/TWI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
3
Processor Series
ATMEGA48x
Core
AVR8
Data Ram Size
512 B
Maximum Clock Frequency
10 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
Controller Family/series
AVR MEGA
No. Of I/o's
23
Eeprom Memory Size
256Byte
Ram Memory Size
512Byte
Cpu Speed
10MHz
No. Of Timers
3
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
25.2.1
EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.
25.2.2
Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the BLBSET and SELFPRGEN bits are set
in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET
and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no LPM
instruction is executed within three CPU cycles or no SPM instruction is executed within four
CPU cycles. When BLBSET and SELFPRGEN are cleared, LPM will work as described in the
Instruction set Manual.
Bit
Rd
The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles
after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low byte
(FLB) will be loaded in the destination register as shown below.See
a detailed description and mapping of the Fuse Low byte.
Bit
Rd
Similarly, when reading the Fuse High byte (FHB), load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the
SPMCSR, the value of the Fuse High byte will be loaded in the destination register as shown
below. See
byte.
Bit
Rd
Similarly, when reading the Extended Fuse byte (EFB), load 0x0002 in the Z-pointer. When an
LPM instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are set
in the SPMCSR, the value of the Extended Fuse byte will be loaded in the destination register as
shown below. See
Fuse byte.
Bit
Rd
Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.
25.2.3
Preventing Flash Corruption
During periods of low V
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.
2545S–AVR–07/10
7
6
5
4
7
6
5
4
FLB7
FLB6
FLB5
FLB4
Table 27-4 on page 285
for detailed description and mapping of the Extended Fuse
7
6
5
4
FHB7
FHB6
FHB5
FHB4
Table 27-5 on page 286
for detailed description and mapping of the Extended
7
6
5
4
FHB7
FHB6
FHB5
FHB4
, the Flash program can be corrupted because the supply voltage is
CC
ATmega48/88/168
3
2
1
0
LB2
LB1
Table 27-5 on page 286
3
2
1
0
FLB3
FLB2
FLB1
FLB0
3
2
1
0
FHB3
FHB2
FHB1
FHB0
3
2
1
0
FHB3
FHB2
FHB1
FHB0
for
263

Related parts for ATMEGA48V-10MU