ATTINY84V-10MU Atmel, ATTINY84V-10MU Datasheet - Page 185

IC MCU AVR 8K FLASH 10MHZ 20-QFN

ATTINY84V-10MU

Manufacturer Part Number
ATTINY84V-10MU
Description
IC MCU AVR 8K FLASH 10MHZ 20-QFN
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheets

Specifications of ATTINY84V-10MU

Core Processor
AVR
Core Size
8-Bit
Speed
10MHz
Connectivity
USI
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number Of I /o
12
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
20-MLF®, QFN
Processor Series
ATTINY8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
SPI
Maximum Clock Frequency
10 MHz
Number Of Programmable I/os
12
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
21. Typical Characteristics
21.1
8006K–AVR–10/10
Supply Current of I/O Modules
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indica-
tions of how the part will behave.
The following charts show typical behavior. These figures are not tested during manufacturing.
During characterisation devices are operated at frequencies higher than test limits but they are
not guaranteed to function properly at frequencies higher than the ordering code indicates.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. Current consumption is a function of several factors such as oper-
ating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed
and ambient temperature. The dominating factors are operating voltage and frequency.
A sine wave generator with rail-to-rail output is used as clock source but current consumption in
Power-Down mode is independent of clock selection. The difference between current consump-
tion in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog
Timer disabled represents the differential current drawn by the Watchdog Timer.
The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:
where V
I/O pin.
The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
is controlled by the Power Reduction Register. See
details.
Table 21-1.
Table 21-2
ages and frequencies than those mentioned in the
I
CP
PRR bit
PRTIM1
PRTIM0
PRUSI
PRADC
V
CC
CC
×
C
= operating voltage, C
below can be used for calculating typical current consumption for other supply volt-
L
×
Additional Current Consumption for the different I/O modules (absolute values)
f
SW
V
CC
= 2V, f = 1MHz
29.6 µA
5.1 µA
6.6 µA
3.7 µA
L
= load capacitance and f
V
CC
Typical numbers
= 3V, f = 4MHz
Table 21-1
“Power Reduction Register” on page 35
31.0 µA
40.0 µA
23.1 µA
88.3 µA
SW
above.
= average switching frequency of
ATtiny24/44/84
V
CC
= 5V, f = 8MHz
118.2 µA
153.0 µA
333.3 µA
92.2 µA
185
for

Related parts for ATTINY84V-10MU