ATtiny28L

Manufacturer Part NumberATtiny28L
ManufacturerAtmel Corporation
ATtiny28L datasheets
 


Specifications of ATtiny28L

Flash (kbytes)2 KbytesPin Count28
Max. Operating Frequency4 MHzCpu8-bit AVR
Hardware Qtouch AcquisitionNoMax I/o Pins11
Ext Interrupts10Usb SpeedNo
Usb InterfaceNoGraphic LcdNo
Video DecoderNoCamera InterfaceNo
Analog Comparators1Resistive Touch ScreenNo
Temp. SensorNoCrypto EngineNo
Sram (kbytes)0.03Self Program MemoryNO
Dram MemoryNoNand InterfaceNo
PicopowerNoTemp. Range (deg C)-40 to 85
I/o Supply Class1.8 to 5.5Operating Voltage (vcc)1.8 to 5.5
FpuNoMpu / Mmuno / no
Timers132khz RtcNo
Calibrated Rc OscillatorYes  
1
2
3
4
5
6
7
8
9
10
11
Page 11
12
Page 12
13
Page 13
14
Page 14
15
Page 15
16
Page 16
17
Page 17
18
Page 18
19
Page 19
20
Page 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
Page 13/81

Download datasheet (664Kb)Embed
PrevNext
Memory Access and
Instruction Execution
Timing
Flash Program Memory
1062F–AVR–07/06
Constant byte address is specified by the Z-register contents. The 15 MSBs select word
address (0 - 1K), and LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB =
1).
This section describes the general access timing concepts for instruction execution and
internal memory access.
The AVR CPU is driven by the System Clock, directly generated from the external clock
crystal for the chip. No internal clock division is used.
Figure 14 shows the parallel instruction fetches and instruction executions enabled by
the Harvard architecture and the fast-access register file concept. This is the basic pipe-
lining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks and functions per power unit.
Figure 14. The Parallel Instruction Fetches and Instruction Executions
T1
System Clock Ø
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch
Figure 15 shows the internal timing concept for the register file. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.
Figure 15. Single Cycle ALU Operation
System Clock Ø
Total Execution Time
Register Operands Fetch
ALU Operation Execute
Result Write Back
The ATtiny28 contains 2K bytes of on-chip Flash memory for program storage. Since all
instructions are single 16-bit words, the Flash is organized as 1K x 16 words. The Flash
memory has an endurance of at least 1,000 write/erase cycles.
The ATtiny28 program counter is 10 bits wide, thus addressing the 1K word Flash pro-
gram memory. See “Programming the Flash” on page 47 for a detailed description of
Flash data downloading.
ATtiny28L/V
T2
T3
T1
T2
T3
T4
T4
13