ISL6534CRZ Intersil, ISL6534CRZ Datasheet - Page 22

no-image

ISL6534CRZ

Manufacturer Part Number
ISL6534CRZ
Description
IC CTRLR PWM DUAL LINEAR 32QFN
Manufacturer
Intersil
Datasheet

Specifications of ISL6534CRZ

Topology
Step-Down (Buck) Synchronous (2), Linear (LDO) (1)
Function
Any Function
Number Of Outputs
3
Frequency - Switching
300kHz ~ 1MHz
Voltage/current - Output 1
Controller
Voltage/current - Output 2
Controller
Voltage/current - Output 3
Controller
W/led Driver
No
W/supervisor
No
W/sequencer
Yes
Voltage - Supply
3.3 V ~ 12 V
Operating Temperature
0°C ~ 70°C
Mounting Type
*
Package / Case
*
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ISL6534CRZ
Manufacturer:
TI
Quantity:
7 155
Part Number:
ISL6534CRZ
Manufacturer:
ISL
Quantity:
20 000
Part Number:
ISL6534CRZ-T
Manufacturer:
INTERSIL
Quantity:
11 900
Part Number:
ISL6534CRZ-T
Manufacturer:
INTERSIL
Quantity:
20 000
Company:
Part Number:
ISL6534CRZ-T
Quantity:
865
Part Number:
ISL6534CRZR5229
Manufacturer:
Intersil
Quantity:
135
Output Inductor Selection
The output inductor is selected to meet the output voltage
ripple requirements and minimize the converter’s response
time to the load transient. The inductor value determines the
converter’s ripple current and the ripple voltage is a function
of the ripple current. The ripple voltage and current are
approximated by the following equations:
Increasing the value of inductance reduces the ripple current
and voltage. However, the large inductance values reduce
the converter’s response time to a load transient (and
usually increases the DCR of the inductor, which decreases
the efficiency). Increasing the switching frequency (Fs) for a
given inductor also reduces the ripple current and voltage.
One of the parameters limiting the converter’s response to a
load transient is the time required to change the inductor
current. Given a sufficiently fast control loop design, the
ISL6534 will provide either 0% or 87.5% duty cycle in
response to a load transient. The response time is the time
required to slew the inductor current from an initial current
value to the transient current level. During this interval the
difference between the inductor current and the transient
current level must be supplied by the output capacitor.
Minimizing the response time can minimize the output
capacitance required.
The response time to a transient is different for the
application of load and the removal of load. The following
equations give the approximate response time interval for
application and removal of a transient load:
where: I
response time to the application of load, and t
response time to the removal of load. With a +5V input
source, the worst case response time can be either at the
application or removal of load and dependent upon the
output voltage setting. Be sure to check both of these
equations at the minimum and maximum output levels for
the worst case response time.
Output Capacitors Selection
An output capacitor is required to filter the output and supply
the load transient current. The filtering requirements are a
function of the switching frequency and the ripple current.
The load transient requirements are a function of the slew
rate (di/dt) and the magnitude of the transient load current.
These requirements are generally met with a mix of
capacitors and careful layout.
Modern microprocessors produce transient load rates above
1A/ns. High frequency capacitors initially supply the transient
∆I =
t
RISE
V
------------------------------- -
IN
=
Fs x L
TRAN
------------------------------- -
V
L
- V
O
IN
×
OUT
I
TRAN
V
is the transient load current step, t
OUT
V
--------------- -
V
OUT
IN
t
FALL
22
∆V
=
OUT
L
------------------------------ -
O
V
×
= ∆I x ESR
OUT
I
TRAN
FALL
RISE
is the
is the
ISL6534
and slow the current load rate seen by the bulk capacitors.
The bulk filter capacitor values are generally determined by
the ESR (effective series resistance) and voltage rating
requirements rather than actual capacitance requirements.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements. And keep in mind that not all
applications have the same requirements; some may need
many ceramic capacitors in parallel; others may need only one.
Use only specialized low-ESR capacitors intended for
switching-regulator applications for the bulk capacitors.
The bulk capacitor’s ESR will determine the output ripple
voltage and the initial voltage drop after a high slew-rate
transient. An aluminum electrolytic capacitor's ESR value is
related to the case size with lower ESR available in larger
case sizes. However, the equivalent series inductance
(ESL) of these capacitors increases with case size and can
reduce the usefulness of the capacitor to high slew-rate
transient loading. Unfortunately, ESL is not a specified
parameter. Work with your capacitor supplier and measure
the capacitor’s impedance with frequency to select a
suitable component. In most cases, multiple electrolytic
capacitors of small case size perform better than a single
large case capacitor.
Input Capacitor Selection
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency decoupling and bulk capacitors
to supply the current needed each time Q1 turns on. Place
the small ceramic capacitors physically close to the
MOSFETs and between the drain of Q1 and the source of Q2.
The important parameters for the bulk input capacitor are the
voltage rating and the RMS current rating. For reliable
operation, select the bulk capacitor with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25 times greater than the maximum
input voltage and a voltage rating of 1.5 times is a
conservative guideline. The RMS current rating requirement
for the input capacitor of a buck regulator is approximately
1/2 the DC load current.
For both through-hole and surface-mount design, several
electrolytic capacitors (Panasonic HFQ series or Nichicon
PL series or Sanyo MV-GX or equivalent) may be needed.
For surface mount designs, solid tantalum capacitors can be
used, but caution must be exercised with regard to the
capacitor surge current rating. These capacitors must be
capable of handling the surge-current at power-up. The TPS
series available from AVX, and the 593D series from
Sprague are both surge current tested.
November 18, 2005
FN9134.2

Related parts for ISL6534CRZ