ATMEGA32A-PU Atmel, ATMEGA32A-PU Datasheet - Page 189

MCU AVR 32K FLASH 16MHZ 40-PDIP

ATMEGA32A-PU

Manufacturer Part Number
ATMEGA32A-PU
Description
MCU AVR 32K FLASH 16MHZ 40-PDIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32A-PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
40PDIP
Device Core
AVR
Family Name
ATmega
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Data Rom Size
1024 B
Height
4.83 mm
Length
52.58 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
13.97 mm
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32A-PU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATMEGA32A-PU
Manufacturer:
Atmel
Quantity:
26 792
Table 20-2.
8155C–AVR–02/11
Status Code
(TWSR)
Prescaler Bits
are 0
$08
$10
$18
Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware
A START condition has been
transmitted
A repeated START condition
has been transmitted
SLA+W has been transmitted;
ACK has been received
Status Codes for Master Transmitter Mode
TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to
transmit a START condition and TWINT must be written to one to clear the TWINT Flag. The
TWI will then test the Two-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be $08 (See
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:
When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in master
mode are $18, $20, or $38. The appropriate action to be taken for each of these status codes is
detailed in
When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:
This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:
A REPEATED START condition is generated by writing the following value to TWCR:
After a repeated START condition (state $10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START
enables the master to switch between slaves, master transmitter mode and master receiver
mode without losing control of the bus.
TWCR
Value
TWCR
Value
TWCR
Value
TWCR
Value
Table
To/from TWDR
Load SLA+W
Load SLA+W or
Load SLA+R
Load data byte or
No TWDR action or
No TWDR action or
No TWDR action
TWINT
TWINT
TWINT
TWINT
1
1
1
1
20-2.
Application Software Response
TWEA
TWEA
TWEA
TWEA
X
X
X
X
STA
0
0
0
0
1
0
1
TWSTA
TWSTA
TWSTA
TWSTA
STO
0
0
0
0
0
1
1
0
0
0
1
To TWCR
TWINT
1
1
1
1
1
1
1
TWSTO
TWSTO
TWSTO
TWSTO
1
0
0
0
TWEA
X
X
X
X
X
X
X
Table
Next Action Taken by TWI Hardware
SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode
Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be Reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset
TWWC
TWWC
TWWC
TWWC
X
X
X
X
20-2). In order to enter MT mode,
TWEN
TWEN
TWEN
TWEN
1
1
1
1
ATmega32A
0
0
0
0
TWIE
TWIE
TWIE
TWIE
X
X
X
X
189

Related parts for ATMEGA32A-PU