MC9S08AW60CPUE Freescale Semiconductor, MC9S08AW60CPUE Datasheet - Page 145

IC MCU 64K FLASH 64-LQFP

MC9S08AW60CPUE

Manufacturer Part Number
MC9S08AW60CPUE
Description
IC MCU 64K FLASH 64-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of MC9S08AW60CPUE

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-LQFP
Processor Series
S08AW
Core
HCS08
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SCI/SPI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
54
Number Of Timers
8
Operating Supply Voltage
- 0.3 V to + 5.8 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWS08
Development Tools By Supplier
DEMO9S08AW60E
Minimum Operating Temperature
- 40 C
On-chip Adc
16-ch x 10-bit
For Use With
DEMO9S08AW60E - DEMO BOARD FOR MC9S08AW60
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08AW60CPUE
Manufacturer:
TDK-LAMBDA
Quantity:
92
Part Number:
MC9S08AW60CPUE
Manufacturer:
FREESCALE
Quantity:
4 000
Part Number:
MC9S08AW60CPUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08AW60CPUE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC9S08AW60CPUE
Quantity:
7
Part Number:
MC9S08AW60CPUE
Quantity:
7
Part Number:
MC9S08AW60CPUE
0
Part Number:
MC9S08AW60CPUER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
8.4.9
The reference clock and the DCO clock are monitored under different conditions (see
the reference frequency is being monitored, ERCS = 1 indicates that the reference clock meets minimum
frequency requirements. When the reference and/or DCO clock(s) are being monitored, if either one falls
below a certain frequency, f
LOCS will remain set until it is acknowledged or until the MCU is reset. LOCS is cleared by reading
ICGS1 then writing 1 to ICGIF (LOCRE = 0), or by a loss-of-clock induced reset (LOCRE = 1), or by any
MCU reset.
If the ICG is in FEE, a loss of reference clock causes the ICG to enter SCM, and a loss of DCO clock causes
the ICG to enter FBE mode. If the ICG is in FBE mode, a loss of reference clock will cause the ICG to
enter SCM. In each case, the CLKST and CLKS bits will be automatically changed to reflect the new state.
If the ICG is in FEE mode when a loss of clock occurs and the ERCS is still set to 1, then the CLKST bits
are set to 10 and the ICG reverts to FBE mode.
A loss of clock will also cause a loss of lock when in FEE or FEI modes. Because the method of clearing
the LOCS and LOLS bits is the same, this would only be an issue in the unlikely case that LOLRE = 1 and
LOCRE = 0. In this case, the interrupt would be overridden by the reset for the loss of lock.
Freescale Semiconductor
1
2
(CLKST = 00)
(CLKST = 01)
(CLKST = 10)
(CLKST = 11)
If ENABLE is high (waiting for external crystal start-up after exiting stop).
DCO clock will not be monitored until DCOS = 1 upon entering SCM from off or FLL bypassed external mode.
Mode
FLL Loss-of-Clock Detection
SCM
FBE
FEE
FEI
Off
0X or 11
CLKS
0X
0X
10
10
10
10
11
11
10
10
11
LOR
Table 8-8. Clock Monitoring (When LOCD = 0)
and f
REFST
X
X
X
X
X
X
0
1
0
1
0
1
LOD
MC9S08AW60 Data Sheet, Rev 2
, respectively, the LOCS status bit will be set to indicate the error.
Forced High
Forced High
Forced Low
Forced Low
Real-Time
Forced Low
Forced Low
Real-Time
Real-Time
Real-Time
Real-Time
Real-Time
ERCS
1
External Reference
Monitored?
Clock
Yes
Yes
Yes
Yes
Yes
Yes
Chapter 8 Internal Clock Generator (S08ICGV4)
No
No
No
No
No
No
(1)
Table
Monitored?
DCO Clock
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
(2)
(2)
(2)
8-8). Provided
2
145

Related parts for MC9S08AW60CPUE