ATmega1280 Atmel Corporation, ATmega1280 Datasheet - Page 213

no-image

ATmega1280

Manufacturer Part Number
ATmega1280
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega1280

Flash (kbytes)
128 Kbytes
Pin Count
100
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
86
Ext Interrupts
32
Usb Speed
No
Usb Interface
No
Spi
5
Twi (i2c)
1
Uart
4
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
16
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
8
Eeprom (bytes)
4096
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
6
Output Compare Channels
16
Input Capture Channels
4
Pwm Channels
15
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
2 990
Part Number:
ATmega1280-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
827
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega1280-16AU
Quantity:
23
Company:
Part Number:
ATmega1280-16AU
Quantity:
3 600
Company:
Part Number:
ATmega1280-16AU IC
Quantity:
2 700
Part Number:
ATmega1280-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16CUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280V-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega1280V-8AU
Quantity:
54
Part Number:
ATmega1280V-8CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
22.5.2
22.5.3
2549N–AVR–05/11
Sending Frames with 9 Data Bit
Transmitter Flags and Interrupts
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in
UCSRnB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers R17:R16.
Notes:
The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.
The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.
The Data Register Empty (UDREn) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.
Assembly Code Example
C Code Example
USART_Transmit:
void USART_Transmit( unsigned int data )
{
}
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Copy 9th bit from r17 to TXB8
cbi
sbrc r17,0
sbi
; Put LSB data (r16) into buffer, sends the data
sts UDRn,r16
ret
/* Wait for empty transmit buffer */
while ( !( UCSRnA & (1<<UDREn))) )
/* Copy 9th bit to TXB8 */
UCSRnB &= ~(1<<TXB8);
if ( data & 0x0100 )
/* Put data into buffer, sends the data */
UDRn = data;
1. These transmit functions are written to be general functions. They can be optimized if the con-
2.
UCSRnB |= (1<<TXB8);
See “About Code Examples” on page 11.
tents of the UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used
after initialization.
UCSRnB,TXB8
UCSRnB,TXB8
;
(1)(2)
(1)(2)
ATmega640/1280/1281/2560/2561
213

Related parts for ATmega1280