ATmega1280 Atmel Corporation, ATmega1280 Datasheet - Page 50

no-image

ATmega1280

Manufacturer Part Number
ATmega1280
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega1280

Flash (kbytes)
128 Kbytes
Pin Count
100
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
86
Ext Interrupts
32
Usb Speed
No
Usb Interface
No
Spi
5
Twi (i2c)
1
Uart
4
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
16
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
8
Eeprom (bytes)
4096
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
6
Output Compare Channels
16
Input Capture Channels
4
Pwm Channels
15
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
2 990
Part Number:
ATmega1280-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL
Quantity:
827
Part Number:
ATmega1280-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega1280-16AU
Quantity:
23
Company:
Part Number:
ATmega1280-16AU
Quantity:
3 600
Company:
Part Number:
ATmega1280-16AU IC
Quantity:
2 700
Part Number:
ATmega1280-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16CU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280-16CUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega1280V-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega1280V-8AU
Quantity:
54
Part Number:
ATmega1280V-8CU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
10.13 Register Description
10.13.1
10.13.2
2549N–AVR–05/11
OSCCAL – Oscillator Calibration Register
CLKPR – Clock Prescale Register
• Bits 7:0 – CAL7:0: Oscillator Calibration Value
The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the Factory calibrated frequency as
specified in
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in
1 on page
Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.
The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.
The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the
range.
• Bit 7 – CLKPCE: Clock Prescaler Change Enable
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.
• Bits 3:0 – CLKPS3:0: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 10-15 on page
The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
Bit
(0x66)
Read/Write
Initial Value
Bit
(0x61)
Read/Write
Initial Value
371. Calibration outside that range is not guaranteed.
Table 31-1 on page
CLKPCE
CAL7
R/W
R/W
7
7
0
51.
CAL6
R/W
6
R
6
0
ATmega640/1280/1281/2560/2561
371. The application software can write this register to change
CAL5
R/W
5
R
5
0
Device Specific Calibration Value
CAL4
R/W
4
R
4
0
CLKPS3
CAL3
R/W
R/W
3
3
CLKPS2
CAL2
See Bit Description
R/W
R/W
2
2
CLKPS1
CAL1
R/W
R/W
1
1
CLKPS0
CAL0
R/W
R/W
0
0
Table 31-
OSCCAL
CLKPR
50

Related parts for ATmega1280