P87LPC768BD,512 NXP Semiconductors, P87LPC768BD,512 Datasheet - Page 11

no-image

P87LPC768BD,512

Manufacturer Part Number
P87LPC768BD,512
Description
IC 80C51 MCU 4K OTP 20-SOIC
Manufacturer
NXP Semiconductors
Series
LPC700r
Datasheet

Specifications of P87LPC768BD,512

Core Processor
8051
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, UART/USART
Peripherals
Brown-out Detect/Reset, LED, POR, PWM, WDT
Number Of I /o
18
Program Memory Size
4KB (4K x 8)
Program Memory Type
OTP
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 6 V
Data Converters
A/D 4x8b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
20-SOIC (7.5mm Width)
Processor Series
P87LPC7x
Core
80C51
Data Bus Width
8 bit
Data Ram Size
128 B
Interface Type
I2C, UART
Maximum Clock Frequency
10 MHz, 20 MHz
Number Of Programmable I/os
18
Number Of Timers
2
Operating Supply Voltage
2.7 V to 6 V
Maximum Operating Temperature
+ 70 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Minimum Operating Temperature
0 C
On-chip Adc
8 bit, 4 Channel
For Use With
OM10063 - PROGRAMMER LPC700 P76XLCPOM10050 - EMULATOR LPC700 PDS76X
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
568-3218-5
935267360512
P87LPC768BD
Philips Semiconductors
FUNCTIONAL DESCRIPTION
Details of P87LPC768 functions will be described in the following
sections.
Enhanced CPU
The P87LPC768 uses an enhanced 80C51 CPU which runs at twice
the speed of standard 80C51 devices. This means that the
performance of the P87LPC768 running at 5 MHz is exactly the same
as that of a standard 80C51 running at 10 MHz. A machine cycle
consists of 6 oscillator cycles, and most instructions execute in 6 or 12
clocks. A user configurable option allows restoring standard 80C51
execution timing. In that case, a machine cycle becomes 12 oscillator
cycles.
In the following sections, the term “CPU clock” is used to refer to the
clock that controls internal instruction execution. This may
sometimes be different from the externally applied clock, as in the
case where the part is configured for standard 80C51 timing by
means of the CLKR configuration bit or in the case where the clock
is divided down via the setting of the DIVM register. These features
are described in the Oscillator section.
Analog Functions
The P87LPC768 incorporates analog peripheral functions: an
Analog to Digital Converter and two Analog Comparators. In order to
give the best analog function performance and to minimize power
consumption, pins that are being used for analog functions must
have the digital outputs and inputs disabled.
Digital outputs are disabled by putting the port output into the Input
Only (high impedance) mode as described in the I/O Ports section.
Digital inputs on port 0 may be disabled through the use of the
PT0AD register. Each bit in this register corresponds to one pin of
Port 0. Setting the corresponding bit in PT0AD disables that pin’s
digital input. Port bits that have their digital inputs disabled will be
read as 0 by any instruction that accesses the port.
Analog to Digital Converter
The P87LPC768 incorporates a four channel, 8-bit A/D converter.
The A/D inputs are alternate functions on four port 0 pins. Because
2002 Mar 12
Low power, low price, low pin count (20 pin) microcontroller
with 4 kB OTP 8-bit A/D, Pulse Width Modulator
9
the device has a very limited number of pins, the A/D power supply
and references are shared with the processor power pins, V
V
The A/D converter circuitry consists of a 4-input analog multiplexer
and an 8-bit successive approximation ADC. The A/D employs a
ratiometric potentiometer which guarantees DAC monotonicity.
The A/D converter is controlled by the special function register
ADCON. Details of ADCON are shown in Figure 2. The A/D must be
enabled by setting the ENADC bit at least 10 microseconds before a
conversion is started, to allow time for the A/D to stabilize. Prior to
the beginning of an A/D conversion, one analog input pin must be
selected for conversion via the AADR1 and AADR0 bits. These bits
cannot be changed while the A/D is performing a conversion.
An A/D conversion is started by setting the ADCS bit, which remains
set while the conversion is in progress. When the conversion is
complete, the ADCS bit is cleared and the ADCI bit is set. When
ADCI is set, it will generate an interrupt if the interrupt system is
enabled, the A/D interrupt is enabled (via the EAD bit in the IE1
register), and the A/D interrupt is the highest priority pending
interrupt.
When a conversion is complete, the result is contained in the
register DAC0. This value will not change until another conversion is
started. Before another A/D conversion may be started, the ADCI bit
must be cleared by software. The A/D channel selection may be
changed by the same instruction that sets ADCS to start a new
conversion, but not by the same instruction that clears ADCI.
The connections of the A/D converter are shown in Figure 3.
The ideal A/D result may be calculated as follows:
Result
SS
. The A/D converter operates down to a V
(V
IN
–V
SS
) x
V
DD
256
–V
SS
(round result to the nearest integer)
P87LPC768
DD
supply of 3.0V.
Preliminary data
DD
and

Related parts for P87LPC768BD,512