MCU ARM 64KB FLASH/TIMER 100LQFP

STM32F101V8T6

Manufacturer Part NumberSTM32F101V8T6
DescriptionMCU ARM 64KB FLASH/TIMER 100LQFP
ManufacturerSTMicroelectronics
SeriesSTM32
STM32F101V8T6 datasheet
 


Specifications of STM32F101V8T6

Core ProcessorARM® Cortex-M3™Core Size32-Bit
Speed36MHzConnectivityI²C, IrDA, LIN, SPI, UART/USART
PeripheralsDMA, PDR, POR, PVD, PWM, Temp Sensor, WDTNumber Of I /o80
Program Memory Size64KB (64K x 8)Program Memory TypeFLASH
Ram Size10K x 8Voltage - Supply (vcc/vdd)2 V ~ 3.6 V
Data ConvertersA/D 16x12bOscillator TypeInternal
Operating Temperature-40°C ~ 85°CPackage / Case100-LQFP
Processor SeriesSTM32F101xCoreARM Cortex M3
Data Bus Width32 bitData Ram Size10 KB
Interface TypeI2C, SPI, USARTMaximum Clock Frequency36 MHz
Number Of Programmable I/os100Number Of Timers3 x 16 bit
Operating Supply Voltage2 V to 3.6 VMaximum Operating Temperature+ 85 C
Mounting StyleSMD/SMT3rd Party Development ToolsEWARM, EWARM-BL, MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature- 40 COn-chip Adc12 bit, 16 Channel
For Use With497-10030 - STARTER KIT FOR STM32497-8853 - BOARD DEMO STM32 UNIV USB-UUSCIKSDKSTM32-PL - KIT IAR KICKSTART STM32 CORTEXM3497-8512 - KIT STARTER FOR STM32F10XE MCU497-8505 - KIT STARTER FOR STM32F10XE MCU497-8304 - KIT STM32 MOTOR DRIVER BLDC497-6438 - BOARD EVALUTION FOR STM32 512K497-6289 - KIT PERFORMANCE STICK FOR STM32MCBSTM32UME - BOARD EVAL MCBSTM32 + ULINK-MEMCBSTM32U - BOARD EVAL MCBSTM32 + ULINK2497-6053 - KIT STARTER FOR STM32497-6052 - KIT STARTER FOR STM32497-6050 - KIT STARTER FOR STM32497-6049 - KIT EVALUATION LOW COST STM32497-6048 - BOARD EVALUATION FOR STM32497-6047 - KIT DEVELOPMENT FOR STM32497-5046 - KIT TOOL FOR ST7/UPSD/STR7 MCULead Free Status / RoHS StatusLead free / RoHS Compliant
Eeprom Size-Other names497-6060
1
2
3
4
5
6
7
8
9
10
11
Page 11
12
Page 12
13
Page 13
14
Page 14
15
Page 15
16
Page 16
17
Page 17
18
Page 18
19
Page 19
20
Page 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
Page 19/87

Download datasheet (2Mb)Embed
PrevNext
STM32F101x8, STM32F101xB
capture, output compare, PWM or one pulse mode output. This gives up to 12 input
captures / output compares / PWMs on the largest packages.
The general-purpose timers can work together via the Timer Link feature for synchronization
or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose
timers can be used to generate PWM outputs. They all have independent DMA request
generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
²
2.3.19
I
C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master
mode. A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SM Bus 2.0/PM Bus.
2.3.20
Universal synchronous/asynchronous receiver transmitter (USART)
The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware
management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816
compliant and have LIN Master/Slave capability.
The USART interfaces can be served by the DMA controller.
2.3.21
Serial peripheral interface (SPI)
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
Both SPIs can be served by the DMA controller.
2.3.22
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
2.3.23
ADC (analog to digital converter)
The 12-bit analog to digital converter has up to 16 external channels and performs
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed
on a selected group of analog inputs.
The ADC can be served by the DMA controller.
Doc ID 13586 Rev 14
Description
19/87